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Abstract—Autonomous robotic systems must navigate complex,
dynamic environments in real-time, often facing unpredictable
obstacles and rapidly changing conditions. Traditional sampling-
based methods, such as RRT*, excel at generating collision-free
paths but struggle to adapt to sudden changes without extensive
re-planning. Conversely, learning-based dynamical systems, such
as the Stable Estimator of Dynamical Systems (SEDS), offer
smooth, adaptive trajectory tracking but typically rely on pre-
collected demonstration data, limiting their generalization to
novel scenarios. This paper introduces Sampling-Based Adaptive
Motion Planning (SBAMP), a novel framework that overcomes
these limitations by integrating RRT* for global path planning
with a SEDS-based local controller for continuous, adaptive
trajectory adjustment. Our approach requires no pre-trained
datasets and ensures smooth transitions between planned way-
points, maintaining stability through Lyapunov-based guaran-
tees. We validate SBAMP in both simulated environments and
real hardware using the RoboRacer platform, demonstrating
superior performance in dynamic obstacle scenarios, rapid re-
covery from perturbations, and robust handling of sharp turns.
Experimental results highlight SBAMP’s ability to adapt in
real-time without sacrificing global path optimality, providing
a scalable solution for dynamic, unstructured environments.

Index Terms—RRT*, Dynamical Systems, Stable Estimator
of Dynamical System (SEDS), Adaptive Navigation; Real-Time
Replanning; Lyapunov Stability; Autonomous Navigation

I. INTRODUCTION

Autonomous robots must navigate environments that are
both geometrically complex and dynamically changing, such
as dodging pedestrians on crowded sidewalks, rerouting
around fallen debris in a warehouse, weaving through moving
obstacles on a factory floor, or recovering from large pertur-
bations (e.g., sudden collisions or strong external pushes) that
displace them far from their planned trajectory. A practical
motion planner therefore faces two competing demands:

• Global path quality: computing near-optimal, collision-
free trajectories over long horizons; and

• Local reactivity: instantaneously adapting to newly ob-
served obstacles or goal perturbations.

Sampling-based planners like RRT* [1] guarantee asymp-
totic optimality in static scenes but incur significant overhead
when replanning from scratch under change. Reactive con-
trollers, such as SEDS [2] and LPV-DS [3], offer smooth,
real-time adaptation but rely heavily on pretraining and offline
demonstrations.

To overcome these limitations, we present Sampling-Based
Adaptive Motion Planning (SBAMP), a hybrid framework that

combines RRT* global planning with an online, Lyapunov-
stable SEDS-inspired controller. By fitting a Lyapunov-stable
vector field online to the current RRT* waypoint sequence
(eliminating the need for pre-collected data) and interleaving
millisecond-scale local updates with lower-frequency global
replanning under formal convergence bounds, SBAMP enables
the robot to continuously flow through the learned field
until new information demands only a lightweight RRT*
update—thereby avoiding expensive full replanning.

Our main contributions are:

• A robust, bi-level SBAMP architecture combining RRT*
global planning with an online, Lyapunov-stable SEDS-
inspired controller that significantly augments and rescues
RRT* under the most severe perturbations and failure
scenarios.

• An efficient interleaving scheme that minimizes global
replanning while preserving provable stability.

• A highly modular Python implementation of the SBAMP
algorithm that scales easily and integrates seamlessly
with existing robotic systems.

• Extensive evaluation on RoboRacer [4] hardware and
simulation, showcasing rapid disturbance recovery and
robust obstacle resilience.

The rest of the paper is organized as follows. Section II re-
views related work. Section III details the SBAMP theoretical
framework and and describes its real-time deployment on the
RoboRacer autonomous racing platform. Section IV describes
our experiments and metrics. Section V presents results, and
Section VI concludes with future directions.

II. RELATED WORK

A. Sampling-Based Motion Planning Algorithms

Sampling-Based Motion Planning (SBMP) has become a
cornerstone of robotic motion planning, enabling efficient
navigation in high-dimensional and complex environments
where explicit representation of obstacles is computationally
infeasible. Algorithms such as Rapidly-exploring Random
Trees (RRT) and its asymptotically optimal variant RRT* have
been widely adopted due to their ability to quickly generate
feasible, collision-free paths without requiring a full model of
the environment [5]–[7]. RRT* iteratively refines its solution,
converging to an optimal path as more samples are drawn, and



has been extended for anytime planning to improve path qual-
ity during execution [6]. Variants like bi-directional RRT* and
heuristic-enhanced methods further accelerate convergence in
high-dimensional spaces [8].

Despite their strengths, classical SBMP methods are limited
by their static nature; once a path is generated, they lack
mechanisms for real-time adaptation to sudden environmental
changes or perturbations. Extensions to handle kinodynamic
constraints and dynamic environments often increase compu-
tational complexity, limiting their practicality for online ap-
plications. While heuristic-based improvements mitigate some
limitations, these approaches still struggle to balance global
optimality with rapid, real-time adaptation in unstructured
environments.

B. Learning-Based Dynamical Systems

Learning-based dynamical systems (DS) address real-time
adaptability by modeling robot motions as stable attractor
systems. A prominent example is the Stable Estimator of Dy-
namical Systems (SEDS), which fits a Gaussian mixture model
to demonstration data under Lyapunov-based constraints, guar-
anteeing global asymptotic stability while generalizing across
demonstrations [2]. Linear Parameter-Varying DS (LPV-DS)
generalize this by embedding state-dependence into parameter-
varying linear models, enabling scalable control design with
stability certificates across operating regimes [3]. Another
method, Gaussian Process Modulated Dynamical Systems
(GP-MDS), where a state-dependent modulation matrix is
learned online via Gaussian Process Regression, preserving
the base system’s equilibrium and stability properties while
automatically attenuating modulation far from demonstration
data [9].

While offering formal stability guarantees, these DS
paradigms exhibit complementary shortcomings. SEDS and
LPV-DS achieve global convergence but depend on compre-
hensive offline demonstration datasets to capture the full range
of operating dynamics and ensure stability across regimes [2],
[3]. GP-MDS, in turn, enables online refinement without batch
training yet relies on careful Gaussian process kernel tuning
and sparse-data management, adding overhead and risking lag
under rapid environmental changes [9]. These dependencies on
extensive demonstrations, offline fitting, and nontrivial model
tuning obstruct tight integration with global planners and limit
responsiveness in real-time, unstructured scenarios.

C. Hybrid Approaches

Hybrid frameworks seek to combine sampling based motion
planning’s global exploration with DS’s local adaptability.
For instance, recent work integrates RRT* with Lyapunov-
certified, demonstration-driven SEDS-inspired controllers to
locally “funnel” around nominal waypoints [7], but this ap-
proach relies on pre-collected demonstrations and lacks a
unified global Lyapunov stability guarantee. Robust sampling-
based planners that incorporate forward reachability analysis

to handle uncertainty [10] likewise do not provide unified
Lyapunov-style stability proofs. Chance-constrained RRT vari-
ants employing tube-based LPV-MPC [11] and LPV em-
bedding with sequential quadratic programming nonlinear
MPC [12] achieve probabilistic robustness and efficient tra-
jectory optimization but incur significant online computational
overhead due to per-step optimization solves. While these
hybrid methods advance adaptability or safety, none simultane-
ously avoid dependence on demonstrations, guarantee unified
stability, and maintain real-time computational tractability.

Unlike prior hybrid planners, SBAMP fits its local SEDS-
style Gaussian mixture model on–the–fly from each newly
planned RRT* segment, eliminating any need for offline
demonstration data, and synthesizes every local controller
under a common Lyapunov-function constraint, guaranteeing
global asymptotic stability throughout replanning . Moreover,
by partitioning work into optimized ROS2 nodes that run
RRT* in C++ and then simply evaluate the learned vector
field (a weighted sum of linear maps) at control rate rather
than solving an optimization at each step, SBAMP sustains
real-time performance in dynamic, unstructured environments.

III. SAMPLING BASED ADAPTIVE MOTION PLANNING

A. SBAMP Theoretical Framework

Figure 1 depicts the overall SBAMP control loop. At its
core, SBAMP runs two modules in parallel—a global RRT∗

planner and a local SEDS controller—with a lightweight
decision logic that activates the SEDS generator whenever the
planner produces a new path.

Fig. 1: Flowchart of the SBAMP theoretical framework. When
New Path Available? is true, the SEDS generator refits the
dynamical system to the latest RRT∗ segment; otherwise, the
existing SEDS velocity command is executed.

At a high level, SBAMP is designed to:
• Integrate SEDS with RRT∗: leverage RRT∗ for global,

asymptotically-optimal waypoint generation while em-
ploying a Lyapunov-stable mixture dynamics controller
(SEDS) for local, online trajectory adaptation without
pre-training;



• Achieve seamless waypoint transitions: dynamically shift
the SEDS equilibrium to the current nearest waypoint,
preserving continuity of the commanded velocity.

To realize these objectives, we structure SBAMP as a bi-
level framework comprising three interacting components:

1) Global Path Planning via RRT∗: We incrementally grow
and rewire a tree T ⊂ Cfree using RRT∗ [6], yielding a
waypoint sequence

τ = {x0, x1, . . . , xg} ⊂ Rn.

Every planner cycle (period ∆tG) samples xrand ∼ U(Cfree),
extends toward it, and performs local rewiring in O(logN) to
improve path optimality.

2) Local Trajectory Adaptation via SEDS: At control rate
(∆tC ≪ ∆tG), the robot state ξ(t) is driven by a convex
mixture of K linear subsystems [2]:

ξ̇ = f(ξ) =
K∑

k=1

γk(ξ)
(
Ak ξ+bk

)
,

K∑
k=1

γk(ξ) = 1, γk(ξ) ≥ 0,

(1)
where each Ak+A⊤

k ≺ 0 (ensuring V (ξ) = ξ⊤ξ decays) and

bk = −Ak xi =⇒ f(xi) = 0

at the active waypoint xi. Whenever the planner updates τ , the
decision block in Fig. 1 routes the new segment to the “SEDS
generator”, which recomputes {bk} to recenter the attractor at
the next waypoint xi+1.

3) Real-Time Integration and Stability: The decision dia-
mond “New Path Available?” in Fig. 1 enforces the following
logic:

• Yes: invoke the SEDS generator to refit {bk} for the new
segment {xi, xi+1}, then proceed to execute the updated
velocity ξ̇;

• No: continue executing the velocity output of the current
SEDS model.

By design, the attractor shift is performed without resetting
velocity, i.e.

ξ̇+ = ξ̇−,

which guarantees no jump in the control command. Let τD >
0 denote the average dwell-time, i.e. the minimum average
interval between consecutive switches (formally, the number of
switches Nσ(t1, t2) in any interval [t1, t2] satisfies Nσ ≤ N0+
(t2 − t1)/τD). Under the average-dwell-time theorem [13], if
the SEDS update period ∆tC and RRT∗ planning period ∆tG
satisfy

∆tC ≪ τD ≤ ∆tG,

then the switched system remains globally asymptotically
stable to the final goal xg .

Together, these three modules realize a provably stable, real-
time adaptive planner that seamlessly fuses sampling-based
global planning with Lyapunov-stable local control.

B. SBAMP Implementation on RoboRacer

Building on the stability guarantees of Section III-A, we
realized SBAMP on the RoboRacer [4] platform using ROS2
Humble. Figure 2 depicts the node graph and dataflow: laser
scans and odometry feed into a local occupancy grid, the
planner produces or updates a waypoint sequence τ , the SEDS
controller issues velocity commands, and—if enabled—a visu-
alization node renders the entire state in RViz2. All SBAMP
ROS2 packages and related scripts are publicly available at
https://github.com/Shreyas0812/SBAMP.

Fig. 2: ROS2 architecture for SBAMP on RoboRacer.
Laser scan and odometry feed the occupancy grid node;
next waypoint node and rrt node produce τ ; sbamp node
generates control; visualization node is launched if enabled.

1) Software Architecture: Five ROS2 nodes form the
backbone of SBAMP. The Occupancy Grid Node fuses
LIDAR scans (from /scan) with vehicle odometry



(/ego_racecar/odom) to maintain a local occupancy
grid in real time. The Next Waypoint Node consumes this
grid and extracts the next feasible goal, publishing it on
/next_waypoint. In parallel, the RRT* Node continu-
ously replans a collision-free path through the environment,
outputting the current path segment on /rrt_path. When
enabled, the Visualization Node subscribes to all intermedi-
ate topics and renders waypoints, planned trajectories, and
SBAMP’s vector fields in RViz2 for live debugging. Finally,
the SBAMP Node fits a SEDS-style model to each RRT* seg-
ment and transforms the resulting vector field into Ackermann
drive commands, which it publishes to the vehicle controller
at high frequency. With all nodes in place, the simulation
environment is shown in Figure 3.

Fig. 3: RoboRacer simulation environment with SBAMP-
generated vector field and RRT* path.

2) Platform Configuration: All experiments were per-
formed on the RoboRacer platform, whose kinematics obey

ẋ = v cos θ, ẏ = v sin θ, θ̇ =
v

L
tan δ.

Perception is provided by an 812-beam SICK TIM781 LI-
DAR, and actuation uses ROS2 to send Ackermann steering
commands directly to the vehicle hardware. Figure 4 illustrates
the F1/10 racing-car used for our real-world validation, with
the roof-mounted LIDAR sensor.

Fig. 4: F1/10 hardware platform used for real-world validation.

3) System Integration: Table I lists the four core ROS2
packages that constitute our implementation. Each package
encapsulates one aspect of the SBAMP pipeline, from global
planning to real-time control.

TABLE I: Core ROS2 Package Specifications

Package Functionality

rrt_star OMPL-based path generation
seds_control GMM optimization with CVXPY
waypoint_manager Cubic spline interpolation
f1tenth_utils LIDAR data preprocessing

4) Dynamical System Training: We collected over
500 RRT*-driven trajectories, logging state–velocity pairs
{ξ(k), ξ̇(k)} at 50 Hz. These samples were used to solve

min
Ai,bi

N∑
k=1

∥∥ξ̇(k) − f(ξ(k))
∥∥2

subject to Lyapunov stability constraints

K∑
i=1

γi(ξ) = 1, γi(ξ) ≥ 0,

using the CVXPY [14] optimization library.

IV. EXPERIMENTS

We compare SBAMP to standard RRT* through three com-
plementary studies: (1) quantitative simulation of perturbation
sensitivity, (2) qualitative simulation of extreme-failure recov-
ery, and (3) real-world hardware validation. These experiments
together characterize SBAMP’s replanning performance, res-
cue capability, and robustness under physical disturbances.

A. Experiment 1: Robustness to Lateral Perturbations

1) Objective: Measure how increasing lateral displace-
ments degrade the replanning frequency fplan of RRT* versus
SBAMP.

2) Simulator & Vehicle Model: F1TENTH-gym ROS2 en-
vironment with Ackermann kinematics at v = 1m/s.

3) Protocol: At a fixed straight-away point, “teleport” the
vehicle laterally by various distances immediately before each
planning cycle. For each ∆d, perform N = 20 independent
runs.

4) Metrics:
• Replanning frequency fplan (Hz)
• Forward velocity v (m/s)

5) Analysis: Plot fplan versus ∆d for both methods. A
slower decay in fplan indicates greater robustness.



B. Experiment 2: Recovery from Extreme Failures

1) Objective: Qualitatively illustrate scenarios in which
SBAMP’s dynamical-system controller recovers when RRT*
loses its waypoint buffer.

2) Environment: A 5m×2m corridor with obstacles.

3) Disturbance Modes:
• Translational jump: teleport by increasing ∆d.
• Rotational offset: yaw the vehicle by up to 90◦ (RRT*

often fails above 60◦).
• Corner trap: place the car into a corner, facing the wall.

4) Procedure: For each mode, increase disturbance magni-
tude until each planner fails (cannot replan or collides). Record
the failure threshold for RRT* and SBAMP.

5) Outcomes:
• Failure magnitude (distance, angle, or trap severity)
• Video snapshots of recovery vs. stall/collision

C. Experiment 3: Real-World Stress Test on F1/10 Hardware

1) Objective: Demonstrate SBAMP’s stability and obsta-
cle avoidance under physical disturbances on the RoboRacer
F1/10 platform.

2) Hardware Setup:
• F1/10 race car with 812-beam LiDAR and ROS2 Acker-

mann control (as discussed in Section III-B2)
• Course: loop around Levine Hall with straightaways, tight

turns, and cluttered corridors

3) Disturbance Protocol: During SBAMP runs, apply:
• Pushes: manual lateral shove up to 1m
• Spins: rotate heading up to 90◦

• Obstacles: place unexpected objects on the path

4) Measurements: For each trial, record whether SBAMP:
• Holds pose when the waypoint buffer drains
• Resumes smoothly during the DS recovery and when

RRT* replans
• Avoids collision with the unexpected obstacles

V. EVALUATION

All simulation experiments and real-hardware tests are
available in video form at https://youtu.be/mtq3qeJFjX0.

A. Real-Time Replanning Latency Analysis

Figure 5 depicts the replanning frequency fplan as a func-
tion of lateral perturbation magnitude ∆d for both standard
RRT* and SBAMP. As ∆d increases from 2.25m to 2.75m,
RRT*’s replanning frequency falls below the minimum 2Hz

threshold required for stable 1 m/s operation, whereas SBAMP
consistently maintains approximately 60Hz, thereby ensuring
real-time responsiveness under significant disturbances.

Fig. 5: Replanning Frequency vs. Lateral Perturbation for
RRT* and SBAMP

The replanning frequency fplan quantifies the maximum
allowable latency between successive global-planning up-
dates. Suppose at time t RRT* produces a path segment
{x0, x1, x2, x3}. If the interval 1/fplan exceeds the time
required for the vehicle to traverse from x0 to x3, then, absent
a new trajectory, the controller lacks a valid reference and
stability cannot be guaranteed.

SBAMP addresses this by coupling each RRT* waypoint
with a locally stable dynamical-system (DS) attractor. Even
when the global planner’s update is delayed, the DS controller
continuously generates a velocity command driving the vehicle
toward the last computed waypoint. As soon as RRT* delivers
a new path, SBAMP instantiates a new DS attractor that
smoothly interpolates from the vehicle’s current state to the
next waypoint. Consequently:

• The vehicle always possesses a well-defined reference
trajectory, preventing unbounded drift when planning
updates are slow.

• Transitions between successive RRT* solutions occur
without discontinuities in the control signal.

For a nominal speed of 1m/s, ensuring that the vehicle
moves no more than 0.5m between updates requires fplan ≥
2Hz. SBAMP’s effective replanning frequency of 60Hz thus
provides a substantial safety margin, whereas RRT* alone can
fall below this threshold under perturbations, compromising
real-time adaptability and stability.

B. Experiment 2: Resilience in Planner Failure Scenarios

Figures 6–8 compare standard RRT* (left) against SBAMP
(right) under three challenging scenarios: large translation
perturbations, large rotational perturbations, and tight-corner
recovery.

Under a substantial lateral displacement (Figure 6), RRT*
often fails to reconnect to the original trajectory within a single



planning cycle, leaving the vehicle without a feasible path. In
contrast, SBAMP’s dynamical-system controller immediately
generates a locally stable attractor toward the last RRT*
waypoint, ensuring prompt re-entry into the corridor and
seamless hand-off once a new global path is available. We
have also analyzed this behavior in the quantitative analysis
under Section V-A.

(a) RRT* under large translation (b) SBAMP under large transla-
tion

Fig. 6: Comparison of planner recovery under large transla-
tional perturbations.

When subjected to a rotation exceeding 60° (Figure 7),
RRT* alone frequently times out or returns a path that directs
the vehicle into obstacles, due to excessive planning latency.
SBAMP, however, continues to drive the vehicle toward the
nominal waypoint, maintaining stability until the planner pro-
duces a safe trajectory.

(a) RRT* under large rotation (b) SBAMP under large rotation

Fig. 7: Comparison of planner recovery under large rotational
perturbations.

Finally, in a tight-corner environment (Figure 8), RRT*’s
sparse sampling can yield waypoints that steer the vehicle
dangerously close to opposing walls. SBAMP mitigates this
by following only the immediately reachable waypoint via
its SEDS-based vector field and pausing further progression
until the next plan arrives, resulting in smoother, collision-free
recovery.

These qualitative observations demonstrate that SBAMP
markedly enhances resilience in scenarios where RRT* alone
cannot ensure timely, safe replanning or recovery from severe
disturbances.

(a) RRT* in tight corners (b) SBAMP in tight corners

Fig. 8: Comparison of planner performance in tight-corner
scenarios.

To emphasize SBAMP’s exceptional resilience, Figures
9a–9b demonstrate that SBAMP reliably returns the vehicle to
the planned corridor even after extremely large translational
and rotational displacements. In each case the SEDS-based
attractor guides the robot back to the vicinity of the last RRT*
waypoint, at which point a new global trajectory is computed
and followed without discontinuity. These results confirm
that SBAMP’s integration of dynamical-systems control with
sampling-based planning provides robust recovery from severe
disturbances anywhere within the connected free-space.

(a) Pre-recovery state under
SBAMP

(b) Post-recovery state under
SBAMP

Fig. 9: SBAMP recovery behavior before and after large
translational and rotational perturbations.

C. Experiment 3: Human-Induced Perturbations on Hardware

To validate SBAMP’s robustness on real hardware, we man-
ually applied large translational and rotational disturbances
to the F1/10 vehicle during closed-loop operation. Figure
10 shows the pre- and post-disturbance states for a human-
induced rotation, and Figure 11 shows the corresponding
translational perturbation results.

In both scenarios, immediately after the disturbance the
vehicle deviates from its nominal path (left panels), after which
the SEDS attractor generates control commands that drive
the vehicle back toward the last RRT* waypoint (right pan-
els). Once re-entry is achieved, SBAMP seamlessly switches



to the newly computed global plan. Over 20 randomized
human-applied perturbations, SBAMP attained a near-100%
recovery rate; failures rarely occurred only when rotational
displacements were so large that the subsequent waypoint
was misidentified, although the vehicle still returned to the
most recent waypoint. These hardware trials demonstrate that
SBAMP’s combined sampling-based planning and DS control
maintains stable, safe operation under realistic disturbances.

(a) Pre-perturbation state under
human-induced rotation

(b) Post-perturbation recovery
under human-induced rotation

Fig. 10: SBAMP performance before and after a
human-applied rotational disturbance.

(a) Pre-perturbation state under
human-induced translation

(b) Post-perturbation recovery
under human-induced translation

Fig. 11: SBAMP performance before and after a
human-applied translational disturbance.

Figures 12–13 illustrate SBAMP’s real-world obstacle-
avoidance behavior under two drift scenarios. In scenario A
(Figure 12), the vehicle is perturbed toward a large box;
SBAMP immediately generates a left-side avoidance trajectory
around the obstacle and then rejoins the nominal corridor. In
the opposite scenario B (Figure 13), SBAMP executes a right-
side avoidance maneuver before recovering the original plan.
SBAMP’s obstacle avoidance mechanism is non-invasively
enhanced by RRT * for global path generation: when the
sampling-based planner produces timely, collision-free way-
points, SBAMP does not interfere negatively. When planning
or perception challenges or external disturbances cause RRT*
to falter, the DS attractor seamlessly intervenes to recover a
safe trajectory without modifying the underlying planner.

(a) SBAMP approaching obstacle
region (scenario A).

(b) SBAMP path adaptation
around obstacle (scenario A).

Fig. 12: SBAMP obstacle-avoidance performance in scenario
A - turning left around obstacle.

(a) SBAMP approaching obstacle
region (scenario B).

(b) SBAMP path adaptation
around obstacle (scenario B).

Fig. 13: SBAMP obstacle-avoidance performance in scenario
B-turning right around obstacle.

Across three complementary studies, SBAMP consistently
outperforms standard RRT* in both responsiveness and robust-
ness to external disturbances and pertubations. In simulation,
SBAMP maintained control-loop rates above 60Hz under per-
turbations that reduced RRT* replanning below the 2Hz safety
threshold. In extreme-failure scenarios, the SEDS-based local
attractor guaranteed safe re-entry where RRT* alone stalled
or collided. Finally, on physical F1/10 hardware, SBAMP
achieved near-100% recovery from large translational and
rotational disturbances and executed reliable left- and right-
side obstacle avoidance without modifying the underlying
planner. These results collectively demonstrate that integrat-
ing sampling-based global planning with online, Lyapunov-
stable dynamical-systems control yields a motion-planning
framework capable of real-time adaptation, formal stability
guarantees, and seamless recovery in complex, dynamic en-
vironments.

VI. CONCLUSION

We have introduced SBAMP, a bi-level motion-planning
framework that non-invasively augments RRT* with a
Lyapunov-stable dynamical-systems controller to achieve true



on-the-fly adaptation with no prior training data. SBAMP
continuously converts each RRT* waypoint into a locally
stable attractor, ensuring a valid control reference even when
global replanning lags. Our threefold evaluation, including
control-loop latency analysis in simulation, qualitative recov-
ery from extreme failures, and real-world hardware stress tests,
demonstrates that SBAMP sustains high replanning frequen-
cies, reliably recovers from large translational and rotational
disturbances, and executes safe obstacle avoidance, all without
any offline learning or demonstration dataset.

Future work includes integrating SBAMP with
receding-horizon optimizers such as model predictive
control (MPC) or MPPI to combine finite-horizon cost
minimization with provably stable local attractors. Additional
efforts will embed obstacle-repulsive modulation directly into
the dynamical-systems layer, further reducing reliance on
occupancy-grid update rates and enlarging safety margins.
Finally, a systematic perturbation study will be conducted to
map SBAMP’s region of attraction, and the framework will
be extended to high-dimensional manipulators to broaden its
applicability across autonomous robotics tasks.
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