CIS 580<u>0</u>

Machine Perception

Instructor: Lingjie Liu Lec 10: Feb 26, 2025

Calibrating Camera Under More General Intrinsics

Recap: Perspective Projection Matrix

Generalizing intrinsics (1/2)

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & u_0 \\ f & v_0 \\ & 1 \end{bmatrix} \begin{bmatrix} R_{3 \times 3} & \mathbf{t} \end{bmatrix} \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} = K[R|\mathbf{t}]X_w$$

1. If pixels are not square?

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} s_{\chi} & u_0 \\ s_{\chi} & v_0 \\ & 1 \end{bmatrix} \begin{bmatrix} R_{3 \times 3} & t \end{bmatrix} \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} = K[R|t]X_w$$

What Does (Intrinsics) "Calibration" Do?

Estimates the *intrinsic parameters*

- **f** focal length (or s_x , s_y to allow non-square pixels)
- (u_o, v_o) image center

Method: High-Level Overview

Camera projection matrix $M_{3\times4}$ (Note: we've also called this *P* before)

Method: High-Level Overview M = P = projection matrix

$$\begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \end{bmatrix} \begin{bmatrix} X_i \\ Y_i \\ Z_i \\ 1 \end{bmatrix}$$

$$u_{i} = \frac{m_{00}X_{i} + m_{01}Y_{i} + m_{02}Z_{i} + m_{03}}{m_{20}X_{i} + m_{21}Y_{i} + m_{22}Z_{i} + m_{23}}$$
$$m_{10}X_{i} + m_{11}Y_{i} + m_{12}Z_{i} + m_{13}$$

$$\begin{array}{c} & & & \\ & & &$$

Estimation of the full projection matrix is linear

but M has to be decomposed into K, R, t afterwards

("QR decomposition" of first 3 columns of M to get K, R. Then solve for t)

Generalizing intrinsics (2/2)

1. If pixels are not square?

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} s_{\chi} & u_0 \\ s_{\gamma} & v_0 \\ & 1 \end{bmatrix} \begin{bmatrix} R_{3 \times 3} & t \end{bmatrix} \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} = K[R|t]X_w$$

2. If "radial distortions", then the intrinsics can no longer be represented as a linear operator any more

Parametrizing radial distortion in large field-of-view cameras

Then, correct for radial distortion:

 $u_{\text{pre-distortion}}(r) = u_{\text{post-distortion}}(1 + k_1r^2 + k_2r^4 + k_3r^6 + \cdots)$ $v_{\text{pre-distortion}}(r) = v_{\text{post-distortion}}(1 + k_1r^2 + k_2r^4 + k_3r^6 + \cdots)$

where r is the distance from a (usually unknown) image center location (u_0, v_0) .

Can choose the degree of the radial distortion to calibrate for. More => more accurate, but requires more images to fit well.

What Does (Intrinsics) "Calibration" Do?

Estimates the *intrinsic parameters*

- **f** focal length (or s_x , s_y to allow non-square pixels)
- (u_o, v_o) image center
- k_1, k_2, \ldots radial distortion parameters

Won't see how to do this in mathematical detail.

Colab worksheet (Camera Calibration with OpenCV)!

- <u>https://colab.research.google.com/drive/1Vf6pBFo84OKR0E3j3t3HJjEN71o</u>
 <u>6k0sk?authuser=0</u>
- (Optional) Also see OpenCV Tutorial on Calibration.

Camera Calibration Flowchart

https://learnopencv.com/camera-calibration-using-opencv/

Output: Undistorted images and video!

And also ...

Credit: Kostas Daniilidis