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Recap: Extending to Any Parallel Lines

* Under projective geometry,
= All parallel lines intersect at a point at infinity

" One point at infinity <~ one parallel line direction

line [ = (a, b, c)T intersects at (b, —a, O)T \

image plane



Recap: Point at infinity / “idea

(X19X290)

/N

Looking-at direction  “|deal” points

III

points

If,.*_.-_m_,___




Recap: “Line at infinity”
* A line passing through all ideal points i.e. point

lo = (0,0,1)

e Because:
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Recall: Camera Projection Equation

XY
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/ \ principal axis -
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This assumes that:
 theimage coordinate system origin is the same as the “principal point” p where the

principal / optical axis intersects image plane. Sometimes called “image center”
* Points in the 3D world are known in the camera-centric coordinate system.



Camera Coordinate System + Principal Point Offset

image plane

coordinates
-
7. u optical axis
vy
Y

¥ X Z-axis is the
camera coordinates \ Optica| axis

The image plane (u, v) is perpendicular to the optical axis.
Intersection of the image plane with the optical axis is the image center

(uﬂ'! vﬂ)
Projection Xc YC
in pixels u=fZ_+uO' v=fZ_+vO

Cc Cc



Projection equation with image origin # principal point
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From world to camera: Euclidean transformation

world coordinates What do R and t mean exactly?
Iy, R denotes the rotation of the world axes w.r.t.
image plane
mage pane X Y, ca.mera axes |
= inverse rotation of the camera axes w.r.t. world
\ axes.
"‘*ZC u pr— What about t?
Yoy vy If a were the translation of the world origin from
C
Me the camera origin, then R(x 4+ a) would be the
camera coordinates . )
camera coords of a world point x. i.e. Rx + Ra. So
t here is actually R times the translation of world
origin from camera origin.
Xc Xw
Yc — R YW + t = R3><3 t X
7 — 1'3X3 7 — w
c W 0 1




Putting the pieces together: Projection matrix P

world coordinates

Zy
image plane
coordinates X Yo

Yl\ ZC v¢\\ optical axis
v X

camera coordinates \

camera 3D coords to pixels Convert world to camera coordinates
I
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Summarizing
* Permitting principal point offset (i.e. shifted origin for image plane)

); X +7ul [f ug 0 );
o +zv|=| £ v of|}|=Kin0)X
1] 4 - 1 0l|q

1

“Intrinsics” K

* The above assumes X, Y, Z in camera-centric coordinates. Permitting
different “world” and “camera” coordinate frames:

Xc = R3xs + = [R[t] Xy, x~K|[R|t]X,,

_ N <

Rotate  Translate

First convert to camera coordinates Then project as before.



Perspective Projection in homogeneous coordinates

X
Y
= P
3"/ 3%4 |
1
P3y4 = K3x3[R3x3‘t3><1]
“Camera “Intrinsics” “Extrinsics”
projection
matrix”

Q: How many degrees of freedom does P have
given the type of intrinsics we have assumed?







Projective Transformations

aka Collineations
aka Homographies
aka Projectivity



Example of Projective Transformation

Common notations: H
(Note that some books use A; however, we will avoid using A in this course, as A is commonly associated

with Affine Transformations.)

® *
Frojective
transformation
-
¢ e
Affine ..r._-_-_ - - T 1T
transformation T
- e




Example of Projective Transformation

* A 2D point before H is represented as (X, Y) , after Projective
transformation is (u, v) :
H\ X + HyppY + Hyg
H31 X + H3oY + Hgg

U X or , = HuX+ HynY + Hy
v| ~H|Y " H3 X + H3Y + Ha




Projective Transformation = Homography
= Collineation=Projectivity

Definition
A projective transformation is any invertible matrix transformation
P? — P2,




Projective Transformation = Homography
= Collineation=Projectivity
Definition

A projective transformation is any invertible matrix transformation
P? — P2

A projective transformation H maps p to p’ ~ Hp

Invertibility means that det (H) # 0 and that there exists A # 0 such that
Ap' = Hp

Observe that we will write either p’ ~ Hp or A\p' = Hp



How many unknowns are in a projective

transformation H ?
(P? - P?)

A projective transformation u His the same as H since they map to
projectively equivalent points:

prp' = p Hp



How many unknowns are in a projective

transformation H ?
(P? - P?)

A projective transformation u His the same as H since they map to
projectively equivalent points:

uAp’ = p Hp

We will be able to determine a projective transformation only up to a scale
factor. Hence the 3x3 invertible matrix g will have only EIGHT
independent unknowns.

Q: How many unknowns in a projective transformation in [P3?



Perspective Projection v.s. Projective Transformation

_ Perspective Projection Projective Transformation

Definition

Mathematical Formula
Input Space

Output Space
Applications

A mapping from 3D space to a 2D plane
(e.g., camera image)

p'=K[RIT]P
R3 (can also be P3)
R? (can also be P?)

Image formulation, 3D rendering

A general mapping between
projective space (e.g., P? to P?)

p'=H-p
P™ (typically P? in this class)
P™ (typically P? in this class)

Image registration, planar
transformation, texture mapping



When Perspective Projection -> Projective Transformation?

A perspective camera projection of a plane (i.e., a camera image) is a projective
transformation in P?

VISION SCIENCE
Photons to Phenomenology

Stephen E. Palmer




When Perspective Projection -> Projective Transformation?

e Can we show that the perspective camera projection from P3 — P2 of a

plane in the world is in fact a homography in IP? (i.e., projective
transformation from P? — P?) when the world plane coordinates are

expressed in P??

e Remember:

X
[3’] ~K3x3[R3x3/t3%1]
w

— N <X




Assume world plane Z,, = 0

X T %

Y world coordinates
C TZWXw—aXis out of page)

/////////

A A,



When Perspective Projection -> Projective Transformation?

Recall the projection from world to camera
u /)

(’U) ~ K (rl ro T3 T) 7
N \W/

and assume that all points in the world lie in the ground plane Z = 0.




Pose From Homography

Recall the projection from world to camera

u X\
v NK(rl ro T3 T) 7

N \W)

and assume that all points in the world lie in the ground plane Z = 0.

Then the transformation reads

U X
v| ~K (frl 9 T) Y
w \ Y : W

The planar homography
H:P? - P?

Computing the homography can tell
us how the camera (and therefore,
e.g. a robot attached to the camera) is
oriented w.r.t. to a world plane!
(assuming known K)

Q: Where do you get r5 from though?

A:T3=T1XT2



Localization w.r.t. known planes using homographies




Place in the Hierarchy of Transformations

Projective!

Affi ne Minus Orthonormality Constraint

Similarity Plus Scale

Euclidean




A projective transformation preserves incidence:

e Three collinear points are mapped to three collinear points.

e and three concurrent lines are mapped to three concurrent lines.




Application Example: Virtual Billboards







Computing Homographies From
4 Point Correspondences

“4-point collineation”



How can we compute the projective transformation between
a known pattern and its projection?

and

Floor tiles measured in [m] Points in pixel coordinates



The result of such a transformation would map any point in one plane to
the corresponding point in the other

“correspondences”

Floor tiles measured in [m]

Points in pixel coordinates



Recap: How many unknowns are in a projective

transformation H ?
(P? - P?)

A projective transformation u His the same as H since they map to
projectively equivalent points:

uAp’ = p Hp

We will be able to determine a projective transformation only up to a scale
factor. Hence the 3x3 invertible matrix g will have only EIGHT
independent unknowns.



How can we compute the projective transformation between
a known pattern and its projection?

Bis th elmageo f the
intersection’of vertical parallel
lines (0,1,0) .i.e. vanishifig-.__

point in the verticaldirection!™.__

Als the image of the

intersection of
horizontal parallel
lines (1,0,0). i.e.
hiorizontal vanishing
point

These are homogeneous coordinates to represent the
known pattern in P2




Image Plane

d Plane

Vanishing

Projection center

Parallel Lines



Assume that a mapping H maps the three points
(1,0,0), (0,1,0), and (0,0, 1) to the non-collinear points A,B,C

with coordinate vectors a,b and ¢ € P%. Then the following is a possible
projective transformation:

(a b .t:):(r:m b ";r’ti)

= O =
= = O
—_ o O

with 3 degrees of freedoms «, 8 and ~y. This means 3 points do not suffice
to compute a projective transformation.

Side note: the first 2 columns of the homography are vanishing points!



Solution: Introduce a 4t point correspondence D
Note: makes sense, because after all, H has 8 degrees of freedom, and

each 2D point correspondence pins down 2DOF.
Y .

ALY
o Bl
TR

B is the image.qf the 4 F the image of the
intersection’ef vertical parallel R A S " " intersection of
lines (0,1,0) .i.e- vanishifig-.._ " 3 T ES _ horizontal parallel
point in the vertical'direction™.__ _ = - = € — - lines (1,0,0). i.e.
1 horizontal vanishing
point




Let us assume that the same H maps (1,1, 1) to the point d. Then, the
following should hold:

1
M= (Ha Bb v )| 1 |,
1

hence
Ad = aa + Bb+ ve.



There always exist such A, a, 8, because four elements of R3 \ {(0,0,0)}
are always linearly dependent.

Because a, b, ¢ are not collinear, there exist unique /A, /A, v/ for
writing this linear combination.



There always exist such A, a, 8, because four elements of R3 \ {(0,0,0)}
are always linearly dependent.

Because a, b, ¢ are not collinear, there exist unique /A, /A, v/ for
writing this linear combination.

Since H is the same as H /A we solve for a, B, such that
d = aa + Bb+ e, which can be written as a linear system

8

(a b c)| B |=d
B

Since a, b, ¢ are not collinear we can always find a unique triple a, 3, 7.
The resulting projective transformation is H = ( aa fBb ~c }



Four points, no three of them collinear, suffice to
unambiguously recover a homography

Choosing the points to be the horizontal and vertical vanishing points
(1,0,0), (0,1,0) plus origin (0,0,1) and the diagonal (1,1,1) is
particularly “nice” especially if you have a square to start from, but
really, any four non-collinear points will do.

(coming up next)






What happens when the original set of points is not a square?

Find projective transformation mapping (a, b, ¢, d) — (a’,b,c,d’):



To determine this mapping we go through the four canonical points.

We find the mapping from (1,0,0), etc to (a, b, c,d) and we call it T

a~T(1,0,0)7, etc

We find the mapping from (1,0,0), etc to (a/,b’,¢,d’) and we call it T":
a' ~T'(1,0,0)7, etc
Then, back-substituing (1,0,0)T ~ T~1a, etc we obtain that

a =TT 'a,etc



To determine this mapping we go through the four canonical points.
We find the mapping from (1,0,0), etc to (a, b, c,d) and we call it T
a~T(1,0,0)7, etc

We find the mapping from (1,0,0), etc to (a/,b’,¢,d’) and we call it T":

a' ~T'(1,0,0)7, etc

Then, back-substituing (1,0,0)T ~ T~1a, etc we obtain that

a =TT 'a,etc



To determine this mapping we go through the four canonical points.

We find the mapping from (1,0,0), etc to (a,b,c,d) and we call it T*:
a~T(1,0,0)T, etc
We find the mapping from (1,0,0), etc to (a’,b’,c/,d’) and we call it T":

a' ~T'(1,0,0)7, etc

Then, back-substituing (1,0,0)? ~ T1a, etc we obtain that

a =TT 'a,etc

This amounts to computing homographies from a made-up square, then
inverting one of them and composing!
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