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A is the image 
projection of the 
intersection of 
horizontal parallel 
lines (1,0,0). i.e. 
horizontal vanishing 
point

B is the image projection of the 
intersection of vertical parallel 
lines (0,1,0) .i.e. vanishing 
point in the vertical direction!

D

C

(1,0,1)

Note: makes sense, because after all, A has 8 degrees of freedom, and 
each 2D point correspondence pins down 2DOF.

𝐻𝐻
Recap: Computing Homography from 4 Point Correspondences



Recap: Computing Homography from 4 Point Correspondences
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The first two columns of Homography are two orthogonal vanishing points
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Recap: Computing Homography from 4 Point Correspondences

𝐻𝐻3×3

𝑎𝑎 𝑏𝑏



image plane #1

image plane #2

Recap: The line connecting the camera origin and the vanishing point is parallel to 
all lines that share the same direction and converge at the vanishing point.



Recap: How Artists Find Vanishing Points

Find VP of a world line by:
- Standing at “camera center”.
- Holding arm out parallel to the 

world line.
- Noting its intersection with the 

”canvas” or image plane. i.e. the 
arm represents the light ray.

“Vanishing rays of a world line” 
(camera rays through the VP) are 
just rays parallel to that line, 
passing through the camera center.

http://www.joshuanava.biz/perspective/in-other-words-the-observer-simply-points-in-the-same-direction-as-the-lines-in-
order-to-find-their-vanishing-point.html



In essence, a projective geometry may be thought of as an extension of Euclidean 
geometry in which the "direction" of each line is subsumed within the line as an extra 
"point", and in which a "horizon" of directions corresponding to coplanar lines is 
regarded as a "line"

Recap: Horizon
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AB

XY

horizon

If we connect two vanishing points, we obtain the “horizon”!

Side note: with our assumption of the world plane as being the “XY” plane, and following the common 
convention that xy plane is horizontal, and z is vertical, this indeed maps to our normal notions of a “horizon”.



AB

XY

horizon

Equation of horizon: ℎ1 × ℎ2 𝑇𝑇
𝑥𝑥
𝑦𝑦
𝑧𝑧

= 0

We will encounter another way to derive this equation of the horizon very soon.





Projecting the line at infinity to compute the horizon
Points at infinity in the world plane look like 
𝑋𝑋,𝑌𝑌,𝑊𝑊 = 0 𝑇𝑇

The “line” connecting them is 𝑊𝑊 = 0, the 
“line at infinity”. The image of this line is 
the horizon, which contains all vanishing 
points. Expressed in world plane ℙ2, this 
line’s coefficients are 0,0,1 𝑇𝑇.

So if we could find the projection of this 
line, we could find the horizon
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Deriving the equation of a horizon in another way

Q: We know planar projections 𝐻𝐻 transform points 𝑝𝑝 ∈ ℙ2 as 𝑝𝑝 → 𝐻𝐻𝑝𝑝. How 
do they transform lines in ℙ2?



Projective Transformation of Lines

If 𝐻𝐻 maps a point to 𝐻𝐻𝐻𝐻, then where does a line 𝑙𝑙 map to? 

Line equation in original plane
𝑙𝑙𝑇𝑇𝑝𝑝 = 0

Line equation in image plane where any point 𝑝𝑝′ = 𝐻𝐻𝑝𝑝

𝑙𝑙𝑇𝑇𝐻𝐻−1𝑝𝑝′ = 0

Implies that 𝑙𝑙′ = 𝐻𝐻−𝑇𝑇𝑙𝑙



Projecting the line at infinity to compute the horizon
Points at infinity in the world plane look like 𝑋𝑋,𝑌𝑌,𝑊𝑊 = 0 𝑇𝑇

The “line” connecting them is 𝑊𝑊 = 0, the “line at infinity”. The image of this 
line is the horizon, which contains all vanishing points. Expressed in world 
plane ℙ2, this line’s coefficients are 0,0,1 𝑇𝑇.

So if we could project this line, we could find the horizon
We have just seen projections of lines are 𝐻𝐻−𝑇𝑇𝑙𝑙, so the horizon is 
𝐻𝐻−𝑇𝑇 0,0,1 𝑇𝑇.

If 𝐻𝐻 = [ℎ1 ℎ2 ℎ3] then 𝐻𝐻−𝑇𝑇 is [ℎ2 × ℎ3 ℎ3 × ℎ1 ℎ1 × ℎ2], so the horizon line 
𝐻𝐻−𝑇𝑇 0,0,1 T = ℎ1  ×  ℎ2. 
This is consistent: the horizon connects the two vanishing points ℎ1 and ℎ2.



AB

XY

horizon

Normal to the viewing plane through horizon is ℎ1 × ℎ2

Projection center 

Equation of horizon is ℎ1 × ℎ2
=

Plane through camera 
center and horizon line 
on image plane = 
vanishing plane of the 
world plane

Summary



AB

XY

horizon

Vanishing rays/planes through the camera center are parallel to the world lines/planes
   

So, the horizon plane is parallel to the ground plane
and hence ℎ1 × ℎ2 is the normal to the ground plane!

Projection center 

Horizon plane = 
Vanishing plane = 
Viewing plane

World plane // 
vanishing plane 

World plane = Ground 
plane in this case

Summary





Using the horizon to orient the 
camera



Horizon gives complete info about how ground plane is oriented*! 

Thumb rule: “If horizon is horizontal & central, camera is correctly vertical & 
principal axis is parallel to world plane**!”

*caveat: assuming known 𝐾𝐾
**caveat: assuming that principal axis passes through image center, and sensor axes are horizontal. (usually approximately true)



World plane

Image Plane
Horizon PlaneHorizon

Horizon gives complete info about how ground plane is oriented*! 

Thumb rule: “If horizon is horizontal & central, camera is correctly vertical & 
principal axis is parallel to world plane**!”



Horizon below middle of image => 
we are looking upwards



World plane

Image Plane
Horizon Plane

Horizon

Horizon below middle of image => 
we are looking upwards



Horizon above middle of image => 
we are looking downwards



World plane

Image Plane

Horizon PlaneHorizon

Horizon above middle of image => 
we are looking downwards



World plane

Image Plane

Horizon PlaneHorizon

Horizon above middle of image => 
we are looking downwards

Q: What if you cropped the image? Would these rules still hold?

A: No. The effective intrinsics 𝐾𝐾 would change and become “non-standard”, 
so these thumb rules wouldn’t hold.



AB

XY

horizon

Horizon tells us how camera is oriented.
Constrains homography.

Summing up



Recap: Assume world plane 𝑍𝑍𝑤𝑤 = 0



Recap: Pose From Homography

The planar homography 
𝐻𝐻:ℙ2 → ℙ2

Computing the homography 
can tell us how the camera 
(and therefore, e.g. a robot 
attached to the camera) is 
oriented w.r.t. to a world 
plane! (assuming known K)

Q: Where do you get 𝒓𝒓3 from 
though? A: 𝒓𝒓3 = 𝒓𝒓1 × 𝒓𝒓2
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𝐻𝐻~𝐾𝐾(𝑟𝑟1, 𝑟𝑟2,𝑇𝑇)

𝐻𝐻~(𝑎𝑎, 𝑏𝑏, 𝑐𝑐)
𝑎𝑎~𝐾𝐾𝐾𝐾1, 𝑏𝑏~𝐾𝐾𝐾𝐾2



• We can get the rotation of camera from 2 orthogonal vanishing points on a 
plane, assuming known intrinsics matrix 𝐾𝐾.

• Turns out, you can also get intrinsics from vanishing points.

𝐻𝐻~𝐾𝐾(𝑟𝑟1, 𝑟𝑟2,𝑇𝑇)

𝐻𝐻~(𝑎𝑎, 𝑏𝑏, 𝑐𝑐)
𝑎𝑎~𝐾𝐾𝐾𝐾1, 𝑏𝑏~𝐾𝐾𝐾𝐾2 𝑟𝑟1~𝐾𝐾−1𝑎𝑎, 𝑟𝑟2~𝐾𝐾−1𝑏𝑏 





How to compute intrinsics 𝐾𝐾 from vanishing points



A scene with three orthogonal sets of parallel lines

Three orthogonal sets of parallel 
lines create three orthogonal 

vanishing points 
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Line connecting AB is the horizon!

Remember that the horizon gives 
us the orientation of the ground 

plane with respect to the camera!

AB
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E is the vertical vanishing point! 

AB

E



Let’s look at ABE as a tetrahedron OABE including the projection center 
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Tetrahedron vertex angles are 90 degrees
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Let Q be the orthocenter of the triangle ABE
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Theorem from Euclidean Geometry:
If Q is the orthocenter of ABE and all 
three angles AOB, BOE, and EOA are right 
angles , the OQ is perpendicular to ABE plane!
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Let Q be the orthocenter of the triangle ABC
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Theorem from Euclidean Geometry:
If Q is the orthocenter of ABE and all 
three angles AOB, BOE, and EOA are right 
angles , the OQ is perpendicular to ABE plane!

OQ is the principal axis and ABE is 
the image plane, hence, Q is the 
principal point / “image center”

E



Bonus proof: Perpendicular from camera center is the orthocenter of VPs

By B
By B

By B: every plane containing 
OC is ⊥ to V1V2V3

By C: V2V3 ⊥ CV1, so OCV1 ⊥  V2V3

90



We found the image center! What about the focal length (f=OQ)?
Can it be computed from A,B, and E ?
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h2 = d1d2 (apply Pythagoras to  BDO, ADO, and BOA)*
f2+d3

2 = h2 (Pythagoras again to OHD)

Hence    f2= d1d2 - d3
2

* https://www.nagwa.com/en/explainers/383190606572/

OQ ⊥ image plane.
So plane OQD ⊥ image plane

AD ⊥ ED (int. of OHD & img plane)
So, AD ⊥ OD
So, BDO, ADO are right triangles.

https://www.nagwa.com/en/explainers/383190606572/


Three orthogonal vanishing points (if none is at infty) allow computation of full intrinsics K 
(focal length and image center)!
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Summary

• If we have 3 orthogonal VPs, we can get full intrinsics K (focal length and 
image center), and also extrinsics R. 
   What’s missing? Just the translation t. 
 And that information is not contained in VPs, because camera translations don’t 

affect the VPs!
 Which is why, when we found homographies (that do contain full information 

about translation), we used more than just VPs.
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