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Administrivia

* Additional PreHW TA Office Hour:

Yiming Huang: Tuesday Feb 18 PM -1PM: https://upenn.zoom.us/j/8013153196
* HW1 Due on next Wednesday 11:59pm ET.



Recap:

Vanishing rays/planes through the camera center are parallel to the world lines/planes

So, the horizon plane is parallel to the ground plane
and hence h; X h, is the normal to the ground plane!

Projection center

Horizon plane =
Vanishing plane =
Viewing plane

World plane //
vanishing plane

World plane = Ground
plane in this case



Recap:

Horizon gives complete info about how camera is oriented w.r.t. world plane*!

Thumb rule: “If horizon is horizontal & central, camera is correctly vertical &
principal axis is parallel to world plane**!”

*caveat: assuming known K
**caveat: assuming that principal axis passes through image center, and camera axes are horizontal. (usually approximately true)
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Recap:

A scene with three orthogonal sets of parallel lines

Vanishing
Point

[hrege orthogonal sets of parallel
es create three orthogonal
vanishing points

Image Plane

Horizon

Ground Plane

Parallel Lines




Recap:

Theorem from Euclidean Geometry:

If Q is the orthocenter of ABE and all

three angles AOB, BOE, and EOA are right
angles, the OQ is perpendicular to ABE plane!

Projection
Center O

OQ is the principal axis and ABE is
the image plane, hence, Q is the
principal point / “image center”



Recap: Summary

* If we have 3 orthogonal VPs, we can get full intrinsics K (focal length and
image center), and also extrinsics R.
= What's missing? Just the translation t.

= And that information is not contained in VPs, because camera translations don’t
affect the VPs!

= Which is why, when we found homographies (that do contain full information
about translation), we used more than just VPs.



Cross Ratios & Length Measurements from Single
Images (“Single View Metrology”)



Are lengths preserved under homography?

Obviously not.
What about length ratios?




Projection of a circle

From other perspective views, would the center of this circular clock face
remain at center?

1:1 ~1]1:2

Clearly, length ratios are not preserved under homographies!



Length ratios under homography

A

Clearly, length ratios are not preserved under homographies!

Brannan et al. Geometry



What metric property along a line /s preservedunder a
projective transformation?

* Not lengths AB i.e. distance of two pts from each other.

* Not length ratios i.e. distance of two pts from a third
collinear pt. AC: BC

* Instead, what is preserved is:

= Ratio of ratios of distances of two pts from two other
collinear pts.

AC BC
AD " BD

= Cross ratioof A, B, C, D

AC.BD
D.BC

 CR can also be written as



Cross Ratios of Collinear Points

Given four points A, B,C, D,
we define the cross-ratio
of their distances as

CR(A, B,C, D) = 4 . BC.

CR(A, B,C, D) remains invariant
under projective transformations
B'C'

I

AC . BC _

A.n"{"lf
e .
A F =

Denote x; = (z},1)” and x; = (z;,1)”. Suppose x’; = Hx;. Note |H| = det(H). Then

Note: C
but it is z; — ;= [x; x;| = [NHxi NHx;| = NI H(x x;)

e.g., CR

= )\;AJ[HHX? Xj| — )\;)\j det(H)(.z:r == :Bj)




Same cross ratio for all these 4 point sets!
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Example: Cross ratios for metrology

How far is car from intersection:

E CD=?
D’ A’D’=300 pixe

S
C’ A'C'=275pixels
B’C’=50 pixels

2 km sign 7

A'C' . B'C' _ 275 .50 _ -
AD C BD = 300 ¢ 75 = 1379

AC . BC _ 4-CD . 2-CD __ -
A; A0 ‘BD — 4 -5 =1375

CD = 0.857Tkm

4 km sign -
4 Km Sign mm

A

Note: all distances in image are measurable. And 2 distances in world are given.

ground
plan



What happens when one of the points is at infinity?

Horizon D’

While D’ is a finite point, D on the original plane is at infinity !



What happens when one of the points is at infinity?

Horizon D’

e AIC! . B'Cl _ 4
In pixels T B =

When a point D is at infinity, the cross-ratio becomes a ratio !

AC . BC _ AC (Thinkﬂ'E—AC © AC

AD * BD = BC © @ BC o BC




Vanishing points allow us to measure length ratios!

How far away is the
train from the next station?
i.e. Length of BC?

A'C' . B'C' _ AC

A'D" " B'D'  BC

50

BC

i L]
B‘ ¥

=]] )

00|

: % = % and BC = 33.33 km.

Note: We only needed measurement of 1 distance in the real world.

Brannan et al. Geometry



Also, world plane length ratios determine vanishing points!

Horizon D’

t.’"”' B'C" _ AC
In pixels 4 VD BD = BO

e 2 S ——— Given: AB=BC

ATD" B’ﬂ’ = BC —
If we know A, B’, C" in pixels, we can find D’

In this way, we can find vanishing points and the horizon without even needing parallel lines!






Measuring heights, i.e. distances froma world plane

* So far, we’ve been looking at distances on a world plane.

* Next, distances off it?



Length transfer in 3D

* In the real 3-D world, you can compare one object with known length to
another to “transfer” its length. This is what you do with a ruler, for

example.
ITE
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How to do this in an image?
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Distance Transfer: How tall is the man if the statue is 180cm (in 3D world space)?

Note: we will be
going back and
forth between
world points
(denoted as
capital letters)
and their
projections
(denoted as
small letters).




1. Find horizon (from homography, or by finding VPs)

v 83 m— - ] T‘
:.: |

4

Horizon



1. Find horizon (from homography, or by finding VPs)

Image Plane

Horizon
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2. Connect the feet of the man and the statue and find intersection a’
with horizon!

Image Plane
Horizon
T,
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3. Connect a with top of statue t4

Image Plane

Horizon

B, Ground Plane



MT ,is parallel to the ground > B,M = B;T;

* Consider a world line parallel to B, B and
passing through top of statue T;. It intersects
the person at a point M that is at the same
height as T;. (for practical purposes, we will
treat the person and the statue as “vertical

lines”.)
* The world line MT; is parallel to B, B, so its image Plane

image mt; must meet b, b, at its VP=a. Horizon
* So BzM — BlT]_ O tZe—"’%I—. Ty
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4. But we want B,T 5 in the world.
How can we compute tl'lne ratio B,T»/B,M ?
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4. Only if we know a vanishing point in the vertical direction. Let b4t and
b, m intersect at a vertical VllD v (might be at oo or not) .
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5. Then cross ratio of {v, t2, m, b2} =ratio B,T,: BoM
Ly (and BoM is
statue height.)
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Single View Metrology via Cross Ratios

* |f we know the vanishing point for a direction, we can compute any
ratio along this direction!

* We can transfer lengths among parallel line segments in the world
using knowledge of the vanishing point for their direction.

* All of this without explicitly computing any focal length, intrinsics,
homographies etc.!

We can do “image forensics” on paintings or old photos!

See also: ZH Sec 8.7, How to Detect Faked Photos
/H example 8.25

Techniques that analyze the consistency of elements within an image can help to
determine whether it is real or manipulated.

Hany Farid






Fixing Camera 6DoF Pose Estimation w.r.t
world plane

(given homography H & camera intrinsics K)



Camera 6DOF pose

* A camera’s rotation (3DOF) and translation (3DOF) jointly is called its 6-DOF
pose.

* “camera pose” estimation = finding the “extrinsics matrix”



Recall: we know how to find homography w.r.t. a planar pattern
in the world.




Recall: homography gives pose (given intrinsics K)

Pose from Projective Transformation

Recall the projection from world to camera
X
Y

U
v NK('rl ro T3 T) 7
w

14

and assume that all points in the world lie in the ground plane Z = 0.

Then the transformation reads

U X
(v) NK(rl 9 T) (Y)
w W/ Andr; =1 X1,



But actually, not quite!

* According to the previous slide K(r; , T) = H, or in other words,
K_lH — (T'l, Tz,T) and 3 =T X (&)
If only life were so simple!

* Problem: when we estimate homographies (e.g. through solving linear
systems with 2n equations from n >= 4 point correspondences), and then
compute K1H, we aren’t guaranteed to find a valid r; and 7, pair. i.e. an
orthonormal pair.

= So, we need to find a way to first “correct” (K~1H); to get
orthonormal r; and r,. Often called the “Procrustes”, or “special
orthogonal (SO) Procrustes” problem.

" And we must solve this in real-time for robotics applications, so
preferably an inexpensive approach.



The macabre Greek legend of Procrustes

We are trying to get every (K~1H) “traveler” to fit the “bed” of valid rotation
matrices by stretching it or chopping it off.

= Brobiruftes, =

Mi




Let us name the columns of K1 H:
K~'H = (h} hy hf)

We seek orthogonal r1 and ry that are the closest to k) and h5. The
solution to this problem is given by the Singular Value Decomposition.

We find the orthogonal matrix R that is the closest to (h] k5 R} X hj):

arg min || R — (h’l hy hY X h’z) H%
ReSO(3)




Kabsch algorithm for Procrustes
argmin |[R— (R hy by x hb) ||}
ReS0O(3)

If the SVD of
(b Ry Ry xhy) =USVT

then the solution is

1 0 0
R=U|0 1 0 VT
0 0 det(UVT)

The diagonal matrix is inserted to guarantee that det(R) = 1.

To find the translation : T = h%/||R)|

(In case original columns were not even unit norm)
proof in supp readings- Kabsch-Algorithm-RT-from-H-proof.pdf. We will also prove it in the next class.




Full Kabsch algorithm for finding pose via homography
1. Find H up to a scale factor from the point coorrespondences
2. Compute H' = K~'H. Let H”’s columns be (a b c)

3. Minimize
@ b c)=a(n r D)l

wrt. 1 eR,r,r, TeR3

s.t. rTry = 0and [r|| = [Irall = 1
_ Alternative to running
Let Kabsch including the 3
(a b) = Usp st 0 VT B ! !
2 0 5] 22 columnc = h; X h, ason
Then s last slide
(I’l 7'2) = U3x2V2];c2 and A= ! > 2

4. T=c/aandR=(r rn r xn) ScaleR to have determinant 1 if needed.



So now, camera pose (actually) known w.r.t world plane!
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