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Administrivia

* HW1, due TODAY.
* HW?2, will release this Thursday.



Aside: Engineers Use “Orthographic” Projections

T o
i S AD -
1 H | -
! | ! ~
1 | -
I . I .,
R .
1 |
| (

| i
.12, |.9 | . S8

30

30
15
7

Image formed by rays orthogonal to the image plane, hence “orthographic”.
Field of view limited by size of image plane.

In perspective projection which happens in eyes and cameras, rays pass
through a camera center. Much larger field of view.



Recap: Cross Ratios of Collinear Points

Given four points A, B,C, D,
we define the cross-ratio
of their distances as

CR(A, B,C, D) = 4 . BC.

CR(A, B,C, D) remains invariant
under projective transformations

. B'C’

A/ § = i

AC . BC

Denote x; = (z},1)? and x; = (z;,1)”. Suppose x’; = Hx;. Note |H| = det(H). Then
Note: C
but it is z; — oy =[x xj| = [MiHx AjHx;| = MA[H(x: %)

e.g., CR

— )\;)\J[HHXE Xj| = )\;)\J det(H)(.B, — :I?j)




Recap: Cross ratios for metrology

Horizon D’

A'C' . B'C' _ AC

In pixels 957 D = B

When a point D is at infinity, the cross-ratio becomes a ratio !

. AC BC AC oo AC
AC . BC _ AQ (Thlnk—:—z—X—ZB—C)




Recap: Length transfer in 3D

* In the real 3-D world, you can compare one object with known length to
another to “transfer” its length. This is what you do with a ruler, for

example.
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How to do this in an image?

/H Sec 8.7



Recap: “Fixing pose from homography”

« K~1H is supposed to be our estimate of [ry, 7,, T], but there are no
guarantees that r; and r,, are in fact orthonormal, as they should be.

* So we construct the “Procrustes” problem of finding the “closest valid
rotation matrix R” to K 'H

We find the orthogonal matrix R that is the closest to (k] kY R} x hj):

argmin [|R — (hy  hy hy x hy) [|F
RESO(3)




Recap: Kabsch algorithm for Procrustes
argmin |[R— (hy hy hi x hy) |7
ReS0O(3)

If the SVD of
(b Ry Ry xhy) =USVT

then the solution is

1 0 0
R=U|0 1 0 VT
0 0 det(UVT)

The diagonal matrix is inserted to guarantee that det(R) = 1.

To find the translation : T' = h% /|| h]|
(In case original columns were not even unit norm)

proof in supp readings- Kabsch-Algorithm-RT-from-H-proof.pdf. We will also prove it in the next class.




Acra Cryst. (1976). A32, 922

A sulution for the best rotation to relate two sets of vectors. By WoLrcanG Kaesch, Max—Planck-Institut filr
F 6900 Heidelberg, Jahnstrasse 29, Germany (BRD)

(Received 23 February 1976; accepted 12 April 1976)

A slmple prccedune is derived which determines a besl rotation of a given vector set into a second vector
d

set by minimizing the weighted sum of squares

constraint on the transformation.

In various crystallographic situations the problem arises of
finding a best rotation to fit a given atomic arrangement (o
approximately measured coordinates. Examples have been
given by McLachlan (1972) and Diamond (1976). Diamond
determines the best unconstrained transformation between
the two sets of coordinates and factorizes it into a sym-
metric and an orthogonal matrix, McLachlan finds a best
rotation between the two sets of coordinates by an iterative
process. The analysis below shows that a direct solution
is also possible, despite the non-linear character of the
problem.

Let x, and ¥, (n=1,2,...,N) be two given vector sets
and w, the weight corresponding to each pair X,,¥,. The
problem is then to find an orthogonal matrix U={u,)
which minimizes the function

E=1 S mUs,—y.¢ i)

subject to the constraints

gﬂmﬂarﬁnﬁ“ @)

where the J,; are the elements of the unit matrix. A trans-
lation, if admitted, can always be removed from the prob-
lem by shifting the centroids of the vector sets to the
origin.

Introducing a symmetric matrix L=(/,,) of Lagrange mul-
tipliers an auxiliary fanction (see, for example, Brand,

1938)
F=13 i g #yasty; = Gy &)}
i

The method is for any given metric

is constructed and added to E to form the Lagrangian
function
G=E+F. [C)]

Since for each different condition (2) an independent num-
ber {; is available, the constrained minimum of E is now
included among the free minima of G. A free minimum of
G can nn]y oceur where

au— —Z il Z WX+ ) = Z warwxy =0 (5)
»

and
&G
=0 WaXar g+l 6)
Tt Jg g+ ) (6)
are the elements of a positive definite matrix. xy and y.,
are the kth components of the vectors x, and ..
Let
=2 Wi (o]
w

and
Siy= 2 WoaiKg (8)
"

be the elements of a matrix R=(r;;) and a symmetric ma-
1rix §=(s,), respectively. For i=m= | from equation (6},
a minimum of the Lagrangian function G requires that
S+ L is positive definite, and - by rewriting equation (5) -
that

U.(s+Ly=R. )

SHORT COMMUNICATIONS

References: The Kabsch papers
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Acta Cryst. (1978). A34, 827-828

A discussion of the solution for the best rotation to relate two sets of vectors. By W. KapscH, Max-Planck-
Institut fiir Medizinische Forschung, Abteilung Biophysik, Jahnstrasse 29, 6900 Heidelberg, Federal Republic of Germany

(Received 3 April 1978; accepted 13 April 1978)

A method is discussed for obtaining the best proper rotation to relate two sets of vectors.

The simple procedure for obtaining the best rotation to relate
two sets of vectors described in an earlier paper (Kabsch,
1976) has been used in processing oscillation films (Kabsch,
1977), for the determination of non-crystallographic sym-
metry elements (Kabsch, Gast, Schulz & Leberman, 1977),

AR is a known symm:mc positive dcﬁn:te matrix whose
positive eige: n be d

by standard pmcedules 'J.'hg general so]m:on of (5) is of the
form

The problem is now to find a symmetric matrix L of
Lagrange multipliers such that U is orthogonal. If both
sides of (9) are multiplied by their transposed matrices,
the unknown orthogonal matrix U can be eliminated:

UEH U+ =(ST TUE+ L)
—(s+L)(S+L)=RR. (10)

Since AR is a symmetric positive definile matrix the posi-
tive eigenvalues g, and the corresponding eigenvectors ay
can be found by well established procedures. Since S+ L
is symmetric and positive definite also, it is evident from
(10) that it must have the same normalized eigenvectors
a, and the positive eigenvalues Vu,.

It can be easily verified that the Lagrange multipliers are
then

qug Vox  aud— Sy ()

where ay denotes the ith component of a,. The effect of
the orthogonal matrix U on these eigenvectors &, is deter-
mined from (9) and defines unit vectors by as

=U.a,= VL‘M U(S+Lay= ﬁﬂm- a2

The orthogonal matrix U is finally constructed as
= kZ byt (13)

and the problem to find the constraint minimum of the
function E is solved.

Sometimes it may happen that all of the vectors x, or ¥,
lie in a plane. Then one of the eigenvalues of AR, e.2. ja,
will be zero. In this case a complete set of vectors ag, by is
constructed by setting

ay=a @ by=byxb . (14)

TNote that the procedure described in this article can be
easily extended to vector spaces of higher dimensions.

1t is possible also 1o replace the constraints of equation
(2) by the more general constraints

Ju=m, (15

where M is a symmetric and positive definite matrix. If B
is any specific solution of (15), it is easy to prove that all
possible other solutions U of that equation can be written as
U=v.B (16)

with an onhogonal matrix V. If the initial vector set x, is
|ranxfmmeﬂ into %, = Bx, then this problem is reduced to
i E'=% 2 WVx,—¥,)* with the constraint

1 would like to thank Dr K. C. Helmes for reading the
manuseript,
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Kabsch ‘76: A solution for the best rotation to relate two sets of vectors

Kabsch ‘78: A discussion of the solution for the best rotation to relate two sets of vectors

and for a comparison of macromolecules. In the last
application an improper rotation was sometimes obtained
from the procedure (Nyburg & Yuen, 1977). The purpose of
this communication is to show how a best proper rotation

can always be obtained {rom the procedure.

Let x, and y, (n = 1, ..., N) be two given vector sets and
w, the weights corresponding to each pair x,, y,. All possible

orthogonal matrices U for which the function

E={ Zw,(Usx, — y,)!

has an extremal point must obey [see equation (9) of

Kabsch, 1976]
Us + =R

Writing x,, and y,, for the kth components of the vectors Xy

and y, the matrices R and 8 are defined as

=l = (Z Wb i)

S=(sy)= (Z WXy

(8+ L= {5, + ) = (T apay.op0/u) (6)
L3

where a,, denotes the ith component of a, and the arbitrary
quantities o, can only assume the values +1. I an eigen-
value g, is degenerate the eigenvector a, of RR cannot be
determined uniquely. However, § + L will not be affected by
this ambiguity if all its eigenvalues of the magnitude \/u,
have identical signs. The final construction of all orthogonal
matrices U = (u;,) for which E assumes an extremal point is
given by
m ¥
byag, Y]
&

where by; is the {th component of the vector
@ b= Ua, = U(S + La,/(g,,/ ) = Ra,f(g,/1,). (8)
The residual E at each extremal point is
E=4¥ w,(Ux,—y,’—'E Wwolx; + ¥3)
3 = X woy,-(Ux,)
u

@ =1F wd - Z w z (b, y,)(x,.a,)]

= (I;}is a symmetric matrix of Lagrange multipliers which =4E wixd+yd) - E b,. (Rn.)

is determined from the equation

8+ LS+ L=RR

5 I wlgry)- ch“ﬂ* [t

828 SHORT COMMUNICATIONS

The maximum of E is obtained if all g, are —1. The
minimum of £ is obtained if all 7, are + 1, which agrees with
the result of Kabsch (1976).

1t has also been shown in Kabsch (1976) that § + L must

be positive definite at the minimum of E. Hence, from (2) the
determinants of the two matrices, U and R, must have the
same signs.
In the case that det(R) > 0, the orthogonal matrix U
corresponding to the minimum of E will be a proper rotation.
In the case that det{R) < 0, an improper rotation will be
obtained at the minimum of E (Nyburg & Yuen, 1977).
From (9), the smallest residual £ corresponding to a best
true rotation is then obtained if 0, = 0, = +1 and g, = —1
assuming that g, is the smallest eigenvalue of RR (three-
dimensional vector space). Note that if the smallest cigen-
value is degenerate a best rotation cannot be determined
uniquely in the case det(R) < 0.

Finally, it might be worth mentioning that this procedure
can be generalized to find a best unitary matrix to relate two
sets of vectors in the complex finite-dimensional vector
space.

Summarizing the above results, the following procedure

for obtaining a best proper rotation in a three-dimensional
vector space is suggested.

(a) Remove any translation between the two gimen vector
sets x,, ¥, and determine Ey =4 ¥ w (&I + yD and R

(b) Form RR, determine eugenvalue; 4y and the mutually
orthogonal eigenvectors a, and sort so that u, = g, = u,. Set
ay = a, x &, to be sure to have a right-handed system.

{¢) Determine Ra, (k = 1, 2, 3), normalize the first two
vectors to obtain by, b, and set b, = b, x by. This will also
take care of the case g, > gy = 0.

(d) Form U according to (7) to obtain the best rotation.
Set @y = —1 if by.(Ray) < 0, otherwise o; = + 1. The residual
crror isthen E = Eq — /it — /ity — 0/ ths.
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https://scripts.iucr.org/cgi-bin/paper?a12999

Recap: Full Kabsch algorithm for finding pose via homography
1. Find H up to a scale factor from the point coorrespondences
2. Compute H' = K~'H. Let H”’s columns be (h} h} h})

3. Minimize
I(hy hy h3)-A4 (2 T) |p

wrt. 1 eR,r,r, TeR3

s.t. rlTrz =0and||r]l=|rll =1
~Alternative to running
Let o 0 Kabsch including the 3
(hy hz) = U3x2(0 Sz) Y20 " columnc = hj X h,’ ason
Then - last slide
(n r)=UwVi, ad =2 '2”2

4. T=c/aandR=(r rn r xn) ScaleR to have determinant 1 if needed.



So now, we finally have valid camera pose/extrinsics!




Recap: Pose From Homography

Recall the projection from world to camera

u X\
v NK(rl ro T3 T) 7

N \W)

Computing the homography
can tell us how the camera
(and therefore, e.g. a robot
attached to the camera) is
oriented w.r.t. to a world
plane! (assuming known K)

Q: Where do you get r; from
thOLIgI'fP A: ')"3 — ')"1 X 1‘2

and assume that all points in the world lie in the ground plane Z = 0.

Then the transformation reads

U X
v| ~K (frl 9 T) Y
w \ Y : W

The planar homography
H:P? - P?

&4\5:
Y,

¢ world coordinates
TZWXw—axis out of page)

Yw
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T 0
0 0057
o ’// ,////, /’ G

7




Recap: From world to camera: Euclidean transformation

world coordinates What do R and t mean exactly?
Iy, R denotes the rotation of the world axes w.r.t.
image plane
mage pane X Y, ca.mera axes |
= inverse rotation of the camera axes w.r.t. world
\ axes.
"‘*ZC u pr— What about t?
Yoy vy If a were the translation of the world origin from
C
Me the camera origin, then R(x 4+ a) would be the
camera coordinates . )
camera coords of a world point x. i.e. Rx + Ra. So
t here is actually R times the translation of world
origin from camera origin.
Xc Xw
Yc — R YW + t = R3><3 t X
7 — 1'3X3 7 — w
c W 0 1




Applying extrinsics (and intrinsics) for 3D shape projection

Can do AR-style projection of a 3D object onto the world plane once the full
extrinsics and intrinsics are known! You will do this in HW2.

IKEA App, image from WIRED.



Application of pose: projecting a solid shape into the world

* Our normal projection equations tell us how world points in world
coordinates project onto a camera, given camera pose (R, T) and intrinsics K

world coordinates

Iy
image plane ==l
coordinates Xw Yo
| :} .- -
(N p ,LC
1, X.

camera coordinates

optical axis

< | .
=

x~K[R|t]X,,



Application of pose: projecting a solid shape into the world

* Suppose the shape is expressed by the positions of points X; in a “shape-
coordinate system”

Coordinate system attached to the object



Application of pose: projecting a solid shape into the world

* First find Ry,,, t,, that convert object-centric coordinates X, into world-
centric coordinates X,, = R, X + L., to place the object at the right
place in the world. (Think: what do R, and t.,, mean exactly?)

* Then just render the object points at K|R|t]X,,

world coordinates

y /.
image plane
coordinates X / Yo

NZC 4\\“ optical axis
YC

Xc

camera coordinates \







Pose from Point Correspondences,
the Perspective N Point Problem (PnP)



Localization by observing known 3D points from the world?

R
A real problem for autonomous cars, for example!
GPS: ~ a few feet accuracy. Just not good enough.

Instead, autonomous cars rely on 3D maps of the world to localize!



Navigation with “bearings” from 2 points

If | observe two lighthouses being some fixed angle 6 apart, where am I?

Two points are not sufficient.
Camera could be anywhere on an upper semicircle in 2D.
Worse in 3D: anywhere on a toroid in 3D. Need more points!




The Perspective 3-Point Problem

P
* Given the point correspondences, find camera pose R, T

What are the differences from 4-Point Algorithm?

Jingnan Shi, https://jingnanshi.com/blog/pnp minimal.html



https://jingnanshi.com/blog/pnp_minimal.html

Simplified 3-Point Problem w. 3D Camera Coordinates

A triangle’s world 3D coordinates P; € R3 are known, and its camera-centric
3D coordinates P € R? are known

The 3D->3D 3-Point Problem: Find camera pose R, T such that

PS = RP, + T
PS = RP, + T
PS = RP; + T

Full camera coordinates may come from depth cameras, but otherwise, we
only have pixel coordinates.

Plan: starting from only pixel coordinates, first reduce the problem to 3D->3D.
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