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Spring 2025 Tentative Schedule
Week Date* Topics

0-1 Jan 15, 22

2 Jan 27

3 Feb 3

4 Feb 10

5 Feb 17

6 Feb 24

7 Mar 3

8 Mar 10 
(Spring 
Break)

9 Mar 17

10 Mar 24 Midterm (12%, on March 26)

11 Mar 31

12 Apr 7

13 Apr 14

14 Apr 21

15 Apr 28

16 Btw May 3-13 Final Exam (12%)

HW1 (Feb 3 – Feb 17)

HW2 (Feb 17 – Mar 3)

HW3 (March 3 – March 24)

HW4 (March 31– Apr 14)

two small projects(Apr 14 – May 14)

12%

12%

12%

10%

30%

HW plans might evolve 

HW will be released 
on Wed of that week 
and will be due two 
weeks later, on Wed.



Recap: Basic Perspective Projection Equations

Z&H Ch6
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Recap: Perspective Effects 

ZH Ch6



Review: (Euclidean) Geometric Concepts 
Through Matrix-Vector Algebra



Recap: Basic Perspective Projection Equations
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Points and Lines in Euclidean 2D (shortcut ℝ2)

• Point in 2D space: 𝒙𝒙 = 𝑥𝑥,𝑦𝑦 𝑇𝑇 ∈ ℝ2 
 Projection onto coordinate axes starting from an origin point (0,0). 
 “Cartesian coordinate system”: requires origin and coordinate frame. 

• Line in 2D space:
 Collection of all points 𝑥𝑥,𝑦𝑦 𝑇𝑇 that satisfy an equation 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0 
 Can be indicated by the 3-D column vector: 𝒍𝒍 = 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 𝑇𝑇. 

 The equation of a line can then be written as 𝒍𝒍𝑇𝑇
𝑥𝑥
𝑦𝑦
1

= 0. (dot product)



Points and Planes in Euclidean 3D (shortcut ℝ3)

• Point in 3D space: 𝒙𝒙 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧 𝑇𝑇 ∈ ℝ3 

• Plane in 3D space:
 Collection of all points 𝑥𝑥,𝑦𝑦, 𝑧𝑧 𝑇𝑇 that satisfy an equation 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 +
𝑐𝑐𝑐𝑐 + 𝑑𝑑 = 0 
 Can be indicated by the 4-D column vector:  𝝅𝝅 = 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 𝑇𝑇. 

 The equation of a plane can then be written as 𝝅𝝅𝑇𝑇
𝑥𝑥
𝑦𝑦
𝑧𝑧
1

= 0. 



Lines in ℝ3

• Line in 3D space:
 Interpolate between two points 𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1 𝑇𝑇 and 𝑥𝑥2,𝑦𝑦2, 𝑧𝑧2 𝑇𝑇.
 The set of all points that satisfy 𝑥𝑥,𝑦𝑦, 𝑧𝑧 𝑇𝑇 = 𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1 𝑇𝑇 + 𝜆𝜆(

)
𝑥𝑥2 −

𝑥𝑥1,𝑦𝑦2 − 𝑦𝑦1, 𝑧𝑧2 − 𝑧𝑧1 𝑇𝑇 for some value of 𝜆𝜆
 As a special case of interest: lines through origin: 𝑥𝑥,𝑦𝑦, 𝑧𝑧 𝑇𝑇 =
𝜆𝜆 𝑥𝑥2,𝑦𝑦2, 𝑧𝑧2 𝑇𝑇



Lines in ℝ3

• Alternative definition: intersection of two planes in 3D, so collection of all 
points that satisfy two equations:

𝝅𝝅1𝑇𝑇
𝑥𝑥
𝑦𝑦
𝑧𝑧
1

= 0 and 𝝅𝝅2𝑇𝑇
𝑥𝑥
𝑦𝑦
𝑧𝑧
1

= 0

 Can rewrite in matrix form as 
𝝅𝝅1𝑇𝑇

𝝅𝝅2𝑇𝑇

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

= 0
0

(Line = 1DOF. Needs two linear equality constraints to take away 2DOF. Then 
3DOF (because 3D) – 2DOF = 1DOF.)





Transformations in ℝ3

• Shift (Translation): 
• 3 degrees of freedom (DOF)
• Effect on points: 𝑥𝑥,𝑦𝑦, 𝑧𝑧 𝑇𝑇 → 𝑥𝑥,𝑦𝑦, 𝑧𝑧 𝑇𝑇 + 𝒕𝒕 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧 𝑇𝑇 + 𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0 𝑇𝑇

 From this, can derive equations for how it affects planes, lines etc. 

𝑥𝑥, 𝑦𝑦, 𝑧𝑧 𝑇𝑇 = 𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1 𝑇𝑇 + 𝜆𝜆 𝑥𝑥2 − 𝑥𝑥1,𝑦𝑦2 − 𝑦𝑦1, 𝑧𝑧2 − 𝑧𝑧1 𝑇𝑇



Transformations in ℝ3

• Rotation: 
• 3DOF
• Effect on points: 𝑥𝑥,𝑦𝑦, 𝑧𝑧 𝑇𝑇 → 𝑅𝑅3×3 𝑥𝑥,𝑦𝑦, 𝑧𝑧 𝑇𝑇

 Where 𝑅𝑅3×3 = [𝒓𝒓1, 𝒓𝒓2, 𝒓𝒓3] is an orthonormal matrix, satisfying:
 𝑅𝑅𝑇𝑇𝑅𝑅 = 𝐼𝐼
 Or equivalently, 𝒓𝒓𝒊𝒊𝑻𝑻𝒓𝒓𝒊𝒊 = ||𝒓𝒓𝒊𝒊||2 =  1 and 𝒓𝒓𝒊𝒊𝑻𝑻𝒓𝒓𝒋𝒋 = 0 for all 𝑖𝑖 ≠ 𝑗𝑗
 Determinant: Det(𝑅𝑅3×3) = 1
 9 entries in R matrix, but only 3 actual DOF.

 Can be expressed in terms of geometric angular rotations in various formalisms. 
(See: https://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions)

https://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions


Transformations in ℝ3

• Reflection
• Determinant: Det(𝑅𝑅3×3) = -1

How many DOF does a reflection transformation in ℝ3 have?



Transformations in ℝ3

• “Euclidean Transformations” – Rigid Transformation
• The rigid transformations include rotations, translations, reflections, or any sequence of 

these. Reflections are sometimes excluded from the definition of a rigid 
transformation by requiring that the transformation also preserve the handedness of 
objects in the Euclidean space. (A reflection would not preserve handedness; for 
instance, it would transform a left hand into a right hand.) To avoid ambiguity, a 
transformation that preserves handedness is known as a rigid motion, a Euclidean 
motion, or a proper rigid transformation.

•  arbitrary compositions of rotations and shifts. 6 DOF
 Special because they preserve all lengths (“Isometry”), angles, perimeter, and area. 

https://en.wikipedia.org/wiki/Rotation_(mathematics)
https://en.wikipedia.org/wiki/Translation_(mathematics)
https://en.wikipedia.org/wiki/Reflection_(mathematics)
https://en.wikipedia.org/wiki/Orientation_(mathematics)


Transformations in ℝ3

• Scaling- 1DOF
 Effect on points: 𝑥𝑥,𝑦𝑦, 𝑧𝑧 𝑇𝑇 → 𝜆𝜆(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑇𝑇

• “Similarity Transformations” = combinations of rotations, shifts, scaling.

•  3+3+1=7DOF. Preserves lengths up to a scaling factor

• “Affine Transformations”: 
 Remove the orthonormality constraint on 𝑅𝑅. It is no longer meaningfully treatable as a “rotation”. So 

we have a new, arbitrary 3x3 matrix 𝐴𝐴
 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 𝑇𝑇 → 𝐴𝐴3×3(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑇𝑇 + 𝒕𝒕
 12 DOF = 9 DOF for A + 3 DOF for translation
 Note: does it make sense to do “scaling” any more? 

 Hint: it is equivalently just absorbed into 𝐴𝐴3×3. 
 Still preserves parallel lines



Transformations in ℝ3

• “Affine Transformations”: 𝑥𝑥,𝑦𝑦, 𝑧𝑧 𝑇𝑇 → 𝐴𝐴3×3(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑇𝑇 + 𝒕𝒕
 preserves parallel lines

Proof?



Hierarchy of Transformations

Affine Minus Orthonormality Constraint

Similarity Plus Scaling

Euclidean
Shifts Rotations

Soon an even more general transformation (“projective”)!





Recap: Basic Perspective Projection Equations

Z&H Ch6

𝑥𝑥 = 𝑓𝑓
𝑋𝑋
𝑍𝑍
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Projective Geometry

Based on slides by Jianbo Shi,  Hyun Soo Park,  Kostas Daniilidis



Da Vinci’s ”The Last Supper” c. 1495-98. http://pennpaint.blogspot.com/

Vanishing points

A vanishing point is a 
point on the image plane 
of a perspective 
rendering where the 
two-dimensional 
perspective projections 
of mutually parallel lines 
in three-dimensional 
space appear to 
converge.





Where vanishing points come from

ZHCh8



Images of points “at infinity” are often finite! 
In fact, they will turn out to be surprisingly important.
Need ways to deal with them conveniently and well!

Enter Projective Geometry

We will return to deal with vanishing points and much more 
once we know some projective geometry!





Projective Geometry

• Extension of Euclidean geometry that deals with points at infinity
Other than that, Projective Geometry keeps many of the same features as 

Euclidean geometry.

• A key property is that two lines always meet in a point
 (sometimes a point at infinity)

Z&H Ch1



“Homogeneous coordinates”: Euclidean ℝ𝑛𝑛 → Projective ℙ𝑛𝑛 

• A point in n-D Euclidean space ℝ𝑛𝑛 can be injected into n-D projective space 
ℙ𝑛𝑛 through the “homogeneous coordinates” notation: simply add one 
more vector element, and set it to 1.

Homogeneous coordinates
– represent coordinates in ℙ2 with a 3-vector

We will normally use 𝑤𝑤 to 
denote this homogeneous 
vector element



• Just drop the 1? Not so fast!
 Points in ℙ2 do not all have 𝑤𝑤 = 1 e.g. 𝑥𝑥,𝑦𝑦,𝑤𝑤 = 2 𝑇𝑇

• Key property: (𝑥𝑥,𝑦𝑦, 1) = (2𝑥𝑥, 2𝑦𝑦, 2) = (𝑤𝑤𝑥𝑥,𝑤𝑤𝑦𝑦,𝑤𝑤)
 So (𝑥𝑥,𝑦𝑦, 2)  =  (𝑥𝑥/2,𝑦𝑦/2, 1) in ℙ2 = 𝑥𝑥/2,𝑦𝑦/2 ∈ ℝ2

• Geometric intuition matching to perspective projection:
 a point in the image is a ray in projective space

Projective ℙ𝑛𝑛 → Euclidean ℝ𝑛𝑛

• Each point (𝑥𝑥,𝑦𝑦) on the plane is represented by a ray through origin (𝑤𝑤𝑥𝑥,𝑤𝑤𝑦𝑦,𝑤𝑤)
– all points on the ray are equivalent:  𝑥𝑥 𝑦𝑦, 1 ≈ (𝑤𝑤𝑥𝑥,𝑤𝑤𝑦𝑦,𝑤𝑤)

(0,0,0)

(𝑤𝑤𝑥𝑥,𝑤𝑤𝑤𝑤,𝑤𝑤)

image plane

(𝑥𝑥, 𝑦𝑦, 1)
y

xz

Reduce any (𝑤𝑤𝑥𝑥,𝑤𝑤𝑤𝑤,𝑤𝑤) ∈  ℙ2 
to 𝑤𝑤 = 1 to get image plane 

Euclidean ℝ2 coordinates (𝑥𝑥,𝑦𝑦) 



What about when 𝑤𝑤 = 0?

• If the homogeneous coordinate is 0, (𝑥𝑥,𝑦𝑦,𝑤𝑤 = 0) in projective coordinates 
corresponds to what points, what rays?
 Points at infinity! (Think 𝑥𝑥/0,𝑦𝑦/0)
 Equivalently, rays through origin (camera center), parallel to the 

projective image plane

• This property of projective geometry allows us to handle points at infinity 
through simple vector operations!

Note: ℙ2 does not contain (0,0,0).

Projective geometry is ubiquitous in geometric vision, which models image 
formation as a map from 3-D projective space into 2-D projective space. 



Perspective Projections are Linear in ℙ

𝑋𝑋
𝑌𝑌
𝑍𝑍
1

→
𝑓𝑓𝑋𝑋
𝑓𝑓𝑓𝑓
𝑍𝑍

=
𝑓𝑓 0

𝑓𝑓 0
1 0

𝑋𝑋
𝑌𝑌
𝑍𝑍
1

This encounter with the camera projection equation will not be our last. 
More general versions soon!

Recall:



The projective plane in computer vision

The projective image plane ℙ2 consists of all rays through the origin 𝜆𝜆
𝑢𝑢
𝑣𝑣
𝑤𝑤

, 

which correspond either to points in the image plane 
𝑥𝑥 = 𝑢𝑢/𝑤𝑤
𝑦𝑦 = 𝑣𝑣/𝑤𝑤

1
, 

or to points at infinity 
𝑢𝑢
𝑣𝑣
0

.  





Projective lines
• What does a line in the image correspond to in projective space?

• A line is a plane of rays through origin
– all rays (𝑥𝑥,𝑦𝑦,𝑤𝑤) satisfying:  𝑎𝑎𝑎𝑎 +  𝑏𝑏𝑏𝑏 +  𝑐𝑐𝑐𝑐 =  0

𝑎𝑎 𝑏𝑏 𝑐𝑐
𝑥𝑥
𝑦𝑦
𝑤𝑤

= 0

𝒍𝒍𝑻𝑻 𝒙𝒙 = 0



Projective Lines

𝑙𝑙 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 = 0

Q: what is the relationship 
between 𝑙𝑙 = 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 𝑇𝑇 and 
the plane?

A: It is perpendicular to the 
plane.



Line passing through two points in ℙ𝟐𝟐



Two points:

Define a line

Line passing through two points in ℙ𝟐𝟐

𝒍𝒍 = 𝒑𝒑𝟐𝟐  ×  𝒑𝒑𝟏𝟏
l is the line passing through the two points

𝒑𝒑𝟏𝟏 and 𝒑𝒑𝟐𝟐 Cross product

Claim:



Vector Algebra Recap: Cross Products

• 𝒂𝒂 ×  𝒃𝒃
Output is a vector with magnitude = ||𝒂𝒂||||𝒃𝒃|| sin𝜽𝜽𝑎𝑎𝑎𝑎 and direction 

perpendicular to both vectors. 
 Right-hand thumb rule to compute direction.
 Area of the parallelogram with 𝒂𝒂 and 𝒃𝒃 as sides.

• Computed as the determinant 
𝒊𝒊 𝒋𝒋 𝒌𝒌
𝑎𝑎1 𝑎𝑎2 𝑎𝑎3
𝑏𝑏1 𝑏𝑏2 𝑏𝑏3

•  𝒂𝒂 ×  𝒃𝒃 = −(𝒃𝒃 ×  𝒂𝒂)



l is the line passing through the two points

Two points:

Define a line

Proof:

Line passing through two points in ℙ𝟐𝟐

𝑙𝑙 = 𝑝𝑝1  ×  𝑝𝑝2

𝑝𝑝1 and 𝑝𝑝2

𝑝𝑝1. 𝑙𝑙 = 𝑝𝑝1. 𝑝𝑝1 × 𝑝𝑝2 = 0 (property of cross-product)
𝑝𝑝2. 𝑙𝑙 = 𝑝𝑝2. 𝑝𝑝1 × 𝑝𝑝2 = 0 

Claim:



The other way: Intersection point of two lines in ℙ𝟐𝟐



Define a point    𝑝𝑝 = 𝑙𝑙1 × 𝑙𝑙2

Given two lines:  𝑙𝑙1 and 𝑙𝑙2
 

p is the intersection of the two lines

Intersection point of two lines in ℙ𝟐𝟐
Q: Why? Hint: solve for the 
intersection by finding 
points that satisfy both line 
equations.

There is a close symmetry 
between points and lines in ℙ2!



Exercise

• Where do the lines 𝑥𝑥 = 1 and 𝑥𝑥 = 2 on image plane intersect?



Intersection point of two lines in ℙ𝟐𝟐

When does P have the form (x,y,0)?
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