CIS 580

Machine Perception

Or Geometric Computer Vision

Instructor: Lingjie Liu Lec 3: Jan 27, 2024

Robot Image Credit: Viktoriya Sukhanova © 123RF.com

We will start OH this week on Zoom

	OH time	OH Zoom Link
Chuhao Chen	Mon 4:00-5:00pm	https://upenn.zoom.us/j/93800746935
Xiangyu Han	Mon 9:30-11:30am	https://upenn.zoom.us/j/98703023093
Aishwarya Balaji	Thur 1-2pm	https://upenn.zoom.us/j/91911855363?pwd=BfYEcbN8BmWxYQeocvejd evynvRBI1.1
Yiming Huang	Mon 6pm - 8pm	https://upenn.zoom.us/j/8013153196
Qiao Feng	Tue 10:30am-11:30am	https://upenn.zoom.us/j/97190861496
Prakriti Prasad	Thursday 9-10 am	https://us04web.zoom.us/j/75830390501?pwd=5X2MOvaUwtazRHeis8M a5SEHdhtZUN.1
Paisley Hou	Mon 1:30-2:30 pm	https://zoom.us/j/92206750596?pwd=tOCsHrtDGJsOLhvz9aTqzk7Bue0aS b.1
Pengyu Chen	Wed 4-6 PM	https://upenn.zoom.us/j/8224378933?omn=93556390130
Xuyi Meng	Tue 9am-10am	https://upenn.zoom.us/j/9152271549
Bryan Alfaro	Fri 3-4 PM	https://upenn.zoom.us/j/92114670861?pwd=XbTV6AAfwGZqle1JfV 9tC6qZGR3Wn8.1
Zi-Yan	Thur 10a-11p	https://us04web.zoom.us/j/71811908516?pwd=XbeesfxBVoap9QA21lyw mkqJSebOOC.1
Quan A. Pham	Tue 8:00 - 9:00 am	https://upenn.zoom.us/j/95713266263?pwd=WXVIu9CMnahpk1z25cClQ bomoyS1b1.1
Yicong Wang	Wed 8:15 - 9:15 am	https://upenn.zoom.us/j/98879627094?pwd=z3boRliz9dWw6Urf1aExWe oCp1DKtO.1
Lingjie Liu	Fri 5-6pm	My office: Levine 462

Recap: Basic Perspective Projection Equations

Z&H Ch6

Recap: Points and Planes in Euclidean 3D (shortcut \mathbb{R}^3)

- Point in 3D space: $\mathbf{x} = (x, y, z)^T \in \mathbb{R}^3$
- Plane in 3D space:

•
$$ax + by + cz + d = 0$$

• $\pi^T \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = 0$, where $\pi = [a, b, c, d]^T$

• Line in 3D space:

•
$$(x, y, z)^T = (x_1, y_1, z_1)^T + \lambda (x_2 - x_1, y_2 - y_1, z_2 - z_1)^T$$
 for some value of λ

$$-\begin{pmatrix} \boldsymbol{\pi}_1^T \\ \boldsymbol{\pi}_2^T \end{pmatrix} \begin{pmatrix} \boldsymbol{\chi} \\ \boldsymbol{y} \\ \boldsymbol{z} \\ \boldsymbol{1} \end{pmatrix} = \begin{pmatrix} \boldsymbol{0} \\ \boldsymbol{0} \end{pmatrix}$$

Recap: Hierarchy of Transformations

Soon an even more general transformation ("projective")!

Recap: Basic Perspective Projection Equations

Recap: Where vanishing points come from

Recap: Projective Geometry

- Extension of Euclidean geometry that deals with points at infinity
 - Other than that, Projective Geometry keeps many of the same features as Euclidean geometry.
- A key property is that two lines always meet in a point
 - (sometimes a point at infinity)

Recap: "Homogeneous coordinates": Euclidean $\mathbb{R}^n \rightarrow$ Projective \mathbb{P}^n

Homogeneous coordinates

– represent coordinates in \mathbb{P}^2 with a 3-vector

Recap: Projective $\mathbb{P}^n \to \text{Euclidean } \mathbb{R}^n$

•
$$(x, y, w) = \left(\frac{x}{w}, \frac{y}{w}, 1\right), if x \neq 0$$

- Geometric intuition y_{1} (0,0,0) z (0,0,0) (0,0,
 - (x, y, 0): an infinity point Note: \mathbb{P}^2 does not contain (0,0,0).

Recap: Perspective Projections are Linear in \mathbb{P}

image plane **Recap: Projective lines** Х (a, b, I: ax+by+c=0 (0,0,0)• A line is a *plane* of rays through origin - all rays (x, y, w) satisfying: ax + by + cw = 0 $\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x \\ y \\ \vdots \end{bmatrix} = 0$ $l^T x = 0$

Recap:Relationship btw Line and Point Representations in \mathbb{P}^2

Given two points: p_1 and p_2

Define a line $l = p_1 \times p_2$

Given two lines: l_1 and l_2

Define a point $p = l_1 \times l_2$

Intersection point of two lines in \mathbb{P}^2

When does P have the form (x,y,0)?

Projective geometry ↔ Euclidean interpretation

In the Euclidean interpretation, we treat w as the third spatial coordinate.

- The *w* axis is a scaled version of the principal axis *Z* (in camera-centric coordinates).
- The image plane is w = 1, same as Z = f
- w = 0 is the same as Z = 0. Parallel to image plane, passing through camera center. **Projective Space Euclidean Space** Х × 🖌 🗶 C $(\lambda x, \lambda y, \lambda)$ Z principal axis Χ, (x, y, 1)W_ сатега (0.0.centre image plane image plane

Exercise

• Where do the lines y = 1 and y = 2 on the image plane intersect?

y = 1 is $l_1 = [0,1,-1]^T$ y = 2 is $l_2 = [0,1,-2]^T$

Intersection = Cross product = [-1,0,0] which is a point at infinity in the direction of the parallel lines!

Extending to Any Parallel Lines

l

$$l = (a, b, c) \qquad \qquad l' = (a, b, c')$$

Intersection:

$$\begin{array}{rcl} \times l' &=& l \times l' \\ &=& \begin{vmatrix} i & j & k \\ a & b & c \\ a & b & c' \end{vmatrix} \\ &=& (bc' - bc, ca - c'a, ab - ab)^T \\ &=& (c' - c)(b, -a, 0)^T \end{array}$$

Any point $(x_1, x_2, 0)$ is intersection of parallel lines

Extending to Any Parallel Lines

- Under projective geometry,
 - All parallel lines intersect at a point at infinity

• One point at infinity \Leftrightarrow one parallel line direction line $l = (a, b, c)^T$ intersects at $(b, -a, 0)^T$

Point at infinity / "ideal" points

- Ideal point ("point at infinity")
 - $p \cong (x, y, 0)$ rays through camera center parallel to image plane
 - It has infinite image coordinates

Point at infinity / "ideal" points

$$(x_1, x_2, 0)$$

Looking-at direction

"Ideal" points

"Line at infinity"

• A line passing through all ideal points i.e. point

$$l_{\infty} = (0,0,1)^T$$

• Because :

$$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix} = 0$$

