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We will start OH this week on Zoom
OH time OH Zoom Link

Chuhao Chen Mon 4:00-5:00pm https://upenn.zoom.us/j/93800746935

Xiangyu Han Mon 9:30-11:30am https://upenn.zoom.us/j/98703023093

Aishwarya Balaji Thur 1-2pm
https://upenn.zoom.us/j/91911855363?pwd=BfYEcbN8BmWxYQeocvejd
evynvRBI1.1

Yiming Huang Mon 6pm - 8pm https://upenn.zoom.us/j/8013153196

Qiao Feng Tue 10:30am-11:30am https://upenn.zoom.us/j/97190861496

Prakriti Prasad Thursday 9-10 am
https://us04web.zoom.us/j/75830390501?pwd=5X2MOvaUwtazRHeis8M
a5SEHdhtZUN.1

Paisley Hou Mon 1:30-2:30 pm
https://zoom.us/j/92206750596?pwd=tOCsHrtDGJsOLhvz9aTqzk7Bue0aS
b.1

Pengyu Chen Wed 4-6 PM https://upenn.zoom.us/j/8224378933?omn=93556390130

Xuyi Meng Tue 9am-10am https://upenn.zoom.us/j/9152271549

Bryan Alfaro Fri 3-4 PM
https://upenn.zoom.us/j/92114670861?pwd=XbTV6AAfwGZqle1JfV
9tC6qZGR3Wn8.1

Zi-Yan Thur 10a-11p
https://us04web.zoom.us/j/71811908516?pwd=XbeesfxBVoap9QA21lyw
mkqJSebOOC.1

Quan A. Pham Tue 8:00 - 9:00 am 
https://upenn.zoom.us/j/95713266263?pwd=WXVIu9CMnahpk1z25cClQ
bomoyS1b1.1

Yicong Wang Wed 8:15 - 9:15 am
https://upenn.zoom.us/j/98879627094?pwd=z3boRliz9dWw6Urf1aExWe
oCp1DKtO.1

Lingjie Liu Fri 5-6pm My office: Levine 462

https://upenn.zoom.us/j/93800746935?pwd=gtgsGbObabkpvEF9xxjynwOuOVapHr.1
https://upenn.zoom.us/j/98703023093
https://upenn.zoom.us/j/91911855363?pwd=BfYEcbN8BmWxYQeocvejdevynvRBI1.1
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Recap: Basic Perspective Projection Equations

Z&H Ch6
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Recap: Points and Planes in Euclidean 3D (shortcut ℝ3)

• Point in 3D space: 𝒙𝒙 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧 𝑇𝑇 ∈ ℝ3 
• Plane in 3D space:
 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 + 𝑐𝑐𝑧𝑧 + 𝑑𝑑 = 0 

𝝅𝝅𝑇𝑇
𝑥𝑥
𝑦𝑦
𝑧𝑧
1

= 0, where 𝝅𝝅 = 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 𝑇𝑇

• Line in 3D space:
 𝑥𝑥,𝑦𝑦, 𝑧𝑧 𝑇𝑇 = 𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1 𝑇𝑇 + 𝜆𝜆 𝑥𝑥2 − 𝑥𝑥1,𝑦𝑦2 − 𝑦𝑦1, 𝑧𝑧2 − 𝑧𝑧1 𝑇𝑇 for some value 

of 𝜆𝜆


𝝅𝝅1𝑇𝑇

𝝅𝝅2𝑇𝑇

𝑥𝑥
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𝑧𝑧
1

= 0
0



Recap: Hierarchy of Transformations

Affine Minus Orthonormality Constraint

Similarity Plus Scaling

Euclidean
Shifts Rotations

Soon an even more general transformation (“projective”)!



Recap: Basic Perspective Projection Equations

Z&H Ch6
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Recap: Where vanishing points come from

ZHCh8



Recap: Projective Geometry

• Extension of Euclidean geometry that deals with points at infinity
Other than that, Projective Geometry keeps many of the same features as 

Euclidean geometry.

• A key property is that two lines always meet in a point
 (sometimes a point at infinity)

Z&H Ch1



Recap: “Homogeneous coordinates”: Euclidean ℝ𝑛𝑛 → 
Projective ℙ𝑛𝑛 

Homogeneous coordinates
– represent coordinates in ℙ2 with a 3-vector

We will normally use 𝑤𝑤 to 
denote this homogeneous 
vector element



• 𝑥𝑥,𝑦𝑦,𝑤𝑤 = 𝑥𝑥
𝑤𝑤

, 𝑥𝑥
𝑤𝑤

, 1 , 𝑖𝑖𝑓𝑓 𝑥𝑥 ≠ 0
• Geometric intuition

• 𝑥𝑥,𝑦𝑦, 0 : an infinity point 
Note: ℙ2 does not contain (0,0,0).

Recap: Projective ℙ𝑛𝑛 → Euclidean ℝ𝑛𝑛
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(𝑥𝑥, 𝑦𝑦, 1)
y

xz



Recap: Perspective Projections are Linear in ℙ

𝑋𝑋
𝑌𝑌
𝑍𝑍
1

→
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𝑓𝑓 0

𝑓𝑓 0
1 0
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1

Recall:



Recap: Projective lines

• A line is a plane of rays through origin
– all rays (𝑥𝑥,𝑦𝑦,𝑤𝑤) satisfying:  𝑎𝑎𝑥𝑥 +  𝑏𝑏𝑦𝑦 +  𝑐𝑐𝑤𝑤 =  0

𝑎𝑎 𝑏𝑏 𝑐𝑐
𝑥𝑥
𝑦𝑦
𝑤𝑤

= 0

𝒍𝒍𝑻𝑻 𝒙𝒙 = 0



Given two points:

Define a line

Recap:Relationship btw Line and Point Representations 
in ℙ𝟐𝟐

𝒍𝒍 = 𝒑𝒑𝟏𝟏  ×  𝒑𝒑𝟐𝟐

𝒑𝒑𝟏𝟏 and 𝒑𝒑𝟐𝟐
Define a point    𝒑𝒑 = 𝒍𝒍𝟏𝟏 × 𝒍𝒍𝟐𝟐

Given two lines:  𝒍𝒍𝟏𝟏 and 𝒍𝒍𝟐𝟐
 



Intersection point of two lines in ℙ𝟐𝟐

When does P have the form (x,y,0)?





Projective geometry  Euclidean interpretation

In the Euclidean interpretation, we treat 𝑤𝑤 as the third spatial coordinate.
• The 𝑤𝑤 axis is a scaled version of the principal axis 𝑍𝑍 (in camera-centric 

coordinates).
• The image plane is 𝑤𝑤 = 1, same as 𝑍𝑍 = 𝑓𝑓
• 𝑤𝑤 = 0 is the same as 𝑍𝑍 = 0. Parallel to image plane, passing through 

camera center.

(0,0,0)

image plane

(𝑥𝑥, 𝑦𝑦, 1)

y

x w

(𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦, 𝜆𝜆)

Projective Space Euclidean Space



Exercise

• Where do the lines 𝑦𝑦 = 1 and 𝑦𝑦 = 2 on the image plane intersect?

(0,0,0)

image plane

𝑦𝑦 = 1

y

x w

𝑦𝑦 = 2

𝒍𝒍𝟏𝟏𝒍𝒍𝟐𝟐

𝑹𝑹𝟏𝟏

𝑹𝑹𝟐𝟐

𝑹𝑹𝟑𝟑

𝑦𝑦 = 1 is 𝑙𝑙1 = 0,1,−1 𝑇𝑇 
𝑦𝑦 = 2 is 𝑙𝑙2 = 0,1,−2 𝑇𝑇

Intersection = Cross product = 
[−1,0,0] which is a point at 
infinity in the direction of the 
parallel lines!



Extending to Any Parallel Lines

Intersection:

Any point (x1,x2,0) is intersection of parallel lines



Extending to Any Parallel Lines

• Under projective geometry, 
 All parallel lines intersect at a point at infinity

One point at infinity  one parallel line direction 



Point at infinity / “ideal” points
• Ideal point (“point at infinity”)
 p ≅ (𝑥𝑥,𝑦𝑦, 0) – rays through camera center parallel to image plane
 It has infinite image coordinates

(𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦,0)

y
x w

image plane



Point at infinity / “ideal” points

(x1,x2,0)

“Ideal” pointsLooking-at direction



“Line at infinity”

• A line passing through all ideal points i.e. points at infinity:

• Because :

𝒍𝒍∞
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