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Recap: Projective Transformation = Homography 
= Collineation=Projectivity
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A is the image 
projection of the 
intersection of 
horizontal parallel 
lines (1,0,0). i.e. 
horizontal vanishing 
point

B is the image projection of the 
intersection of vertical parallel 
lines (0,1,0) .i.e. vanishing 
point in the vertical direction!

D

C

(1,0,1)

Note: makes sense, because after all, A has 8 degrees of freedom, and 
each 2D point correspondence pins down 2DOF.

𝐻𝐻
Recap: Computing Homography from 4 Point Correspondences



Recap: Computing Homography from 4 Point Correspondences

Image Plane

World Plane

Parallel Lines

Vanishing 
Point

AB
B

xy

𝑥𝑥𝑤𝑤

𝑦𝑦𝑤𝑤

Projection center 

Camera

A’

B’

A

A A’

B

C
C’

B’

C C’

Correspondences: 
(𝑷𝑷𝟐𝟐 →  𝑷𝑷𝟐𝟐)

c (0, 0, 1)

a

b

(1, 0, 0)

(0, 1, 0)

D

C

D’

D

D d D’ (1, 1, 1)



Recall: homography gives pose (given intrinsics K) 

And 𝑟𝑟3 = 𝑟𝑟1 × 𝑟𝑟2



Recap: But actually, not quite!

• According to the previous slide 𝐾𝐾 𝑟𝑟1 𝑟𝑟2 𝑇𝑇 = 𝐻𝐻, or in other words,
𝐾𝐾−1𝐻𝐻 = 𝑟𝑟1, 𝑟𝑟2,𝑇𝑇  and 𝑟𝑟3 = 𝑟𝑟1 × 𝑟𝑟2

If only life were so simple!
• Problem: when we estimate homographies (e.g. through solving linear 

systems with 2n equations from 𝑛𝑛 >= 4 point correspondences), and then 
compute 𝐾𝐾−1𝐻𝐻, we aren’t guaranteed to find a valid 𝑟𝑟1 and 𝑟𝑟2 pair. i.e. an 
orthonormal pair.
 So, we need to find a way to first “correct” 𝐾𝐾−1𝐻𝐻 3×3 to get 

orthonormal 𝑟𝑟1 and 𝑟𝑟2. Often called the “Procrustes”, or “special 
orthogonal (SO) Procrustes” problem.
 And we must solve this in real-time for robotics applications, so 

preferably an inexpensive approach.



Recap: Full Kabsch algorithm for finding pose via homography

𝑎𝑎 𝑏𝑏 = 

Scale R to have determinant 1 if needed.



Pose from Point Correspondences,
the Perspective N Point Problem (PnP)



Localization by observing known 3D points from the world?

A real problem for autonomous cars, for example! 
GPS: ~ a few feet accuracy. Just not good enough.

Instead, autonomous cars rely on 3D maps of the world to localize!



Navigation with “bearings” from 2 points

Fixed
angle

A

B

If I observe two lighthouses being some fixed angle 𝜃𝜃 apart, where am I?

Two points are not sufficient.
Camera could be anywhere on an upper semicircle in 2D. 

Worse in 3D: anywhere on a toroid in 3D. Need more points!



The Perspective 3-Point Problem

Jingnan Shi, https://jingnanshi.com/blog/pnp_minimal.html

• Given the point correspondences, find camera pose 𝑅𝑅,𝑇𝑇

What are the differences from 4-Point Algorithm?

https://jingnanshi.com/blog/pnp_minimal.html


P3P v.s. Homography

• Why P3P needs only three point correspondences, while computing 
Homography needs four point correspondences?



The 3D->3D 3-Point Problem: Find camera pose  𝑅𝑅,𝑇𝑇 such that
𝑃𝑃1𝑐𝑐 = 𝑅𝑅𝑃𝑃1 + 𝑇𝑇
𝑃𝑃2𝑐𝑐 = 𝑅𝑅𝑃𝑃2 + 𝑇𝑇
𝑃𝑃3𝑐𝑐 = 𝑅𝑅𝑃𝑃3 + 𝑇𝑇

A triangle’s world 3D coordinates 𝑃𝑃𝑖𝑖 ∈ ℝ3 are known, and its camera-centric 
3D coordinates 𝑃𝑃𝑖𝑖𝑐𝑐 ∈ ℝ3 are known

Simplified 3-Point Problem w. 3D Camera Coordinates

Full camera coordinates may come from depth cameras, but otherwise, we 
only have pixel coordinates.

Plan: starting from only pixel coordinates, first reduce the problem to 3D->3D. 





A triangle’s world coordinates 𝑷𝑷𝒊𝒊 
are known, and its pixel 
coordinates are known

𝑃𝑃1

𝑃𝑃2𝑃𝑃3

Known angles

camera

P3P from Pixels



Pixels → “Calibrated coordinates”

RGB images only provide pixel coordinates 𝑢𝑢, 𝑣𝑣 for each vertex, not 
camera-centric 3D coordinates. Convert these to:

“Calibrated coordinates”: 𝒑𝒑𝒊𝒊~ 𝐾𝐾−1 𝑢𝑢𝑖𝑖 𝑣𝑣𝑖𝑖 1 𝑇𝑇

These are essentially image plane coordinates with principal point 
as origin, and focal length set to 1.

Euclidean interpretation: 𝒑𝒑𝒊𝒊 is a vector in camera coordinates, 
originating from the camera center and pointing toward the 3D 
point corresponding to pixel coordinates (𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖).



Calibrated coordinates + distance = Camera-centric 3D 

• After writing as calibrated coordinates, camera-centric 3D 
coordinates is just one step away: finding the distance of the 3D 
point along that direction, i.e. “depth”

• To reduce P3P to 3D->3D as we had planned, we will need to find 
those depths. Indeed, that is the first step of P3P. 



The P3P problem: Find 𝜆𝜆𝑖𝑖 ,𝑅𝑅,𝑇𝑇 such that
𝜆𝜆1𝑝𝑝1 = 𝑅𝑅𝑃𝑃1 + 𝑇𝑇
𝜆𝜆2𝑝𝑝2 = 𝑅𝑅𝑃𝑃2 + 𝑇𝑇
𝜆𝜆3𝑝𝑝3 = 𝑅𝑅𝑃𝑃3 + 𝑇𝑇

A triangle’s world coordinates 𝑷𝑷𝒊𝒊 
are known, and its camera-
centric calibrated coordinates 𝒑𝒑𝒊𝒊 
are known

𝑃𝑃1

𝑃𝑃2𝑃𝑃3

Known angles

camera

P3P from Pixels Calibrated Coordinates

Q: Are 𝜆𝜆𝑖𝑖 the same as “depths” 𝑑𝑑𝑖𝑖?
A: No, because 𝑝𝑝𝑖𝑖 are not unit vectors.



The P3P problem: Find 𝑑𝑑𝑖𝑖 ,𝑅𝑅,𝑇𝑇 such that
𝑑𝑑𝑖𝑖

||𝑝𝑝𝑖𝑖||2
𝑝𝑝𝑖𝑖 = 𝑅𝑅𝑃𝑃𝑖𝑖 + 𝑇𝑇,  ∀𝑖𝑖 = 1,2,3

A triangle’s world coordinates 𝑷𝑷𝒊𝒊 
are known, and its camera-
centric calibrated coordinates 𝒑𝒑𝒊𝒊 
are known

𝑃𝑃1

𝑃𝑃2𝑃𝑃3

Known angles

camera

P3P from Calibrated Coordinates



High School Flashback: Triangle Cosine Law

https://www.mathsisfun.com/algebra/trig-cosine-law.html



𝑃𝑃1

𝑃𝑃2𝑃𝑃3

Known angles

camera

P3P Step 1: Finding depths 𝒅𝒅𝒊𝒊 of triangle vertices
Let 𝛿𝛿𝑖𝑖𝑖𝑖 denote the observed angle between the calibrated coordinates 
𝑝𝑝𝑖𝑖 and 𝑝𝑝𝑗𝑗  





Reduces to two quadratic equations in u and v.

a) Solve Eqn (1) for 𝑢𝑢2 in terms of 𝑢𝑢, 𝑣𝑣, 𝑣𝑣2 (and constants).
b) Plug this solution into Eqn (2), so that it has no 𝑢𝑢2 term. Solve for 𝑢𝑢 in terms of 𝑣𝑣, 𝑣𝑣2, 

and constants.
c) Plug this solution for 𝑢𝑢 back into Eqn (1), so that it has no more 𝑢𝑢 or 𝑢𝑢2. Instead, it is a 

4th degree equation in 𝑣𝑣. Get the 4 real solutions analytically. 
d) Then plug back into the solution found in step b) above, to get 𝑢𝑢.
e) Then get 𝑑𝑑1 from the quadratic equations on the last page.
f) Then plug back into 𝑑𝑑2 = 𝑢𝑢𝑑𝑑1 and 𝑑𝑑3 = 𝑣𝑣𝑑𝑑1 from the last page to get 𝑑𝑑2,𝑑𝑑3.

P3P Step 1: The algebraic drudgery 

Grunert 1841



Reference for full version of P3P algebraic drudgery

• Grunert 1841, summarized in Haralick et al, 1993 which is linked in 
supplementary readings.



End result of algebraic drudgery

• We know the distances from camera to all three points! This means that we 
have effectively recovered “depth”, which combined with the calibrated 
coordinates we had before, means that we have:

Camera-centric 3D coordinates for triangle vertices!

So, we can now do what we planned all along, and just solve 
the 3D->3D 3-Point Problem.



Aside: Depth cameras
If we had started with depth images, we could have directly skipped to this point!

Note: Depth cameras commonly work from “stereo”: 2-view geometry!

Intel RealSense: https://www.intelrealsense.com/stereo-depth-vision-basics/ 

https://www.intelrealsense.com/stereo-depth-vision-basics/




The P3P problem has reduced to: 
Find 𝑅𝑅,𝑇𝑇 such that

𝑑𝑑𝑖𝑖
||𝑝𝑝𝑖𝑖||2

𝑝𝑝𝑖𝑖 = 𝑅𝑅𝑃𝑃𝑖𝑖 + 𝑇𝑇,  ∀𝑖𝑖 = 1,2,3

𝑃𝑃1

𝑃𝑃2𝑃𝑃3

Known angles
camera

P3P Step 2: 3D->3D Pose/ 3D Registration. Find R&T!

But naïve direct solution of the linear system is perilous, because 
rotation matrix R might not be valid.

(Does this remind you of something?)



Procrustes Problem and Its Kabsch Algorithm



The P3P problem: Find 𝑅𝑅,𝑇𝑇 such that
𝑑𝑑𝑖𝑖

||𝑝𝑝𝑖𝑖||2
𝑝𝑝𝑖𝑖 = 𝑅𝑅𝑃𝑃𝑖𝑖 + 𝑇𝑇,  ∀𝑖𝑖 = 1,2,3

(Nothing new on this slide except change of notation)

(Note: the method we discuss for P3P step 2 is the same for >3 points too. So 
the rest of this discussion applies to more points too.)



−

Notes:
1. If we find the right rotation matrix 𝑅𝑅, we will be able to find 𝑇𝑇 afterwards.
2. If the centroids 𝐴̅𝐴 and �𝐵𝐵 had both been zero, then we could have set 𝑇𝑇 = 0.



3. Rotation matrix between point sets is unaffected by translating the point sets, so can 
centroid-subtract the point sets before finding rotation. 

4. And after this centroid-subtraction, we know 𝑇𝑇 = 0 (by note#2 above), so:



Reducing to Procrustes problem

This problem can be shown to be equivalent to the Procrustes problem we 
have seen last class for finding 2D homographies!

argmin
𝑅𝑅∈𝑆𝑆𝑆𝑆(3)

||𝐴𝐴 − 𝑅𝑅𝑅𝑅 ||𝐹𝐹2 = argmin
𝑅𝑅∈𝑆𝑆𝑆𝑆(3)

||𝑅𝑅 − 𝐴𝐴𝐵𝐵𝑇𝑇||𝐹𝐹2



Kabsch Algorithm for 3D->3D

• Compute centroids 𝐴̅𝐴 and �𝐵𝐵 of the two sets of 3D points. 
• Create matrices 𝐴𝐴3×𝑛𝑛, 𝐵𝐵3×𝑛𝑛 after subtracting 𝐴̅𝐴 and �𝐵𝐵 from all points in the 

two sets.
• To find 𝑅𝑅, we must solve:  argmin

𝑅𝑅∈𝑆𝑆𝑆𝑆(3)
||𝐴𝐴 − 𝑅𝑅𝑅𝑅 ||𝐹𝐹 = argmin

𝑅𝑅∈𝑆𝑆𝑆𝑆(3)
||𝑅𝑅 − 𝐴𝐴𝐵𝐵𝑇𝑇||𝐹𝐹2

 First set �𝑅𝑅 = 𝐴𝐴𝐵𝐵𝑇𝑇 3×3 
 Then decompose �𝑅𝑅 = UΣ𝑉𝑉𝑇𝑇

 Set 𝑅𝑅 = 𝑈𝑈
1 0 0
0 1 0
0 0 det(𝑉𝑉𝑈𝑈𝑇𝑇)

𝑉𝑉𝑇𝑇

• Set 𝑇𝑇 = 𝐴̅𝐴 − 𝑅𝑅 �𝐵𝐵



Sidenote: Extensions of 3D Point Set registration: Iterative Closest 
Point (ICP)• Widely used for 3D point set registration without prior knowledge of 

correspondences. Just needs 2 unordered point sets A and B. Jointly finds 
correspondences and transformation.

• Basic pseudocode:
 Step 1: First, find “closest points” in set A for each point in set B. Treat 

these as pseudocorrespondences.
 Step 2: Then solve for R, T treating these correspondences as given. E.g. 

using Kabsch, but several other alternatives.
 Step 3: Transform set B using R, T, and go back to step 1. 



Sidenote: Extensions of 3D Point Set registration: Iterative Closest 
Point (ICP)• Widely used for 3D point set registration without prior knowledge of 

correspondences. Just needs 2 unordered point sets A and B. Jointly finds 
correspondences and transformation.

• Basic pseudocode:
 Step 1: First, find “closest points” in set A for each point in set B. Treat 

these as pseudocorrespondences.
 Step 2: Then solve for R, T treating these correspondences as given. E.g. 

using Kabsch, but several other alternatives.
 Step 3: Transform set B using R, T, and go back to step 1. 

• Disadvantages: 
Much slower because of having to iterate between correspondences and 

transformation. 
 Requires a good initialization of R and T. 



PnP produces non-unique solutions (𝑛𝑛 > 3)?

• Recall that P3P Step 1 produced non-unique solutions for the distances 𝑑𝑑𝑖𝑖. 
• But if we have 𝑛𝑛 > 3 point correspondences, we only need Step 2. This is 

the “Perspective-N-Point” problem, or simply PnP.



Again, first switch to calibrated coordinates:

Direct solution for PnP (𝑛𝑛 > 3): Steps



Direct solution for PnP: Steps

Identical to the stage we reached with P3P, shown above.

But now, we are after a direct solution. 

No need to solve explicitly for depths as we did in P3P, so need to find unit vectors etc.



Get linear equations by cross-multiplying ...

𝐴𝐴2𝑛𝑛×12𝒙𝒙12 = 0,
where 𝒙𝒙 is a vector of all the unknowns including 𝑅𝑅 and 𝑇𝑇. 

Need at least 11 equations = at least 6 point correspondences to solve. 
(just like for homography 𝐴𝐴2𝑛𝑛×9𝒉𝒉9×1 = 0, we needed at least 4 point correspondences = 
8 equations. )

Instead substitute 𝝀𝝀 and get 2 linear equations per point correspondence

Direct solution for PnP: Steps

Q: Why do we need more points for the direct method, when P3P was 
able to work with 3 points?



We meet Procrustes and Kabsch yet again

Again, just solving the linear system won’t give good rotations. So full steps:

1. Solve 𝐴𝐴2𝑛𝑛×12𝒙𝒙12 = 0 from 𝑛𝑛 ≥ 6 correspondences. 
2. Then, assemble the rotation matrix �𝑅𝑅 from the solution for 𝒙𝒙.
3. Then, find the closest valid rotation matrix by Kabsch!

4. May now need to adjust translation 𝑇𝑇 to be consistent with new 𝑅𝑅, e.g., by 
solving 𝐴𝐴2𝑛𝑛×12𝒙𝒙12 = 0, for only 𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3 (elements of 𝒙𝒙), holding 𝑅𝑅 fixed.

Decompose �𝑅𝑅 = UΣ𝑉𝑉𝑇𝑇

Then, set 𝑅𝑅 = 𝑈𝑈
1 0 0
0 1 0
0 0 det(𝑉𝑉𝑈𝑈𝑇𝑇)

𝑉𝑉𝑇𝑇
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