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Administrivia

• Get started on HW2 ASAP! Due March 5, 11:59pm ET.



Summary of Tools for Single-View Geometry (1/2)
• Finding vanishing points:
 Using parallel lines
 Using homographies
 Using “cross ratios”

• Using VPs to compute horizon and determine camera orientation w.r.t. ground 
(assuming standard intrinsics K)

• Finding homographies from planes:
 from 2 orthogonal VPs plus correspondences for the 2 points (0, 0), and (1, 1).
 from 4 non-square points using inversion and composition of 2 homographies.
 from >=4 arbitrary non-collinear point correspondences.

• Using homographies for:
 Virtual billboard display
 Finding camera pose and refining with Kabsch (given intrinsics K)



Summary of Tools for Single-View Geometry (2/2)
• Using cross ratios to measure real lengths:
 Along a line, given 2 world lengths.
 Along a line, given 1 world length and the VP.
 Using VPs on ground plane, vertical VP, and vertical cross ratios for length transfer.

• Using pose and intrinsics (full projection matrix) to project AR objects onto world.
• Finding extrinsics from 3 2D->3D point correspondences (P3P problem)
 What if we had depth images?
 What if we only had standard RGB images?

• Finding extrinsics from n>3 2D->3D point correspondences not on a plane (PnP problem)
• Finding camera intrinsics (camera calibration):
 Finding intrinsics K from 3 orthogonal VPs (camera calibration part 1)
 Overview of more general camera intrinsics calibration under radial distortion

Next, onwards to 2 Views!





3D Motion from Two Views
or Structure from Motion (SfM)
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Input: Two Calibrated Views of the same 3D scene

Intrinsics known, 
So we can always 
stick to 
“calibrated 
coordinates” like 
we used in P3P, 
rather than pixel 
coordinates.



Input: Two Calibrated Views of the Same 3D Scene

𝜆𝜆𝒑𝒑 𝐢𝐢𝐢𝐢 𝑪𝑪𝑪𝑪 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝒔𝒔 = 𝝁𝝁𝝁𝝁 𝐢𝐢𝐢𝐢 𝐂𝐂𝐂𝐂 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜

𝐶𝐶1 𝐶𝐶2

Now, any 3D coordinates in 𝐶𝐶1 frame: 
𝑋𝑋 𝐶𝐶1 → 𝑅𝑅 𝑋𝑋 𝐶𝐶1 + 𝑇𝑇 𝐶𝐶2

So 𝜆𝜆𝜆𝜆 𝐶𝐶1 → 𝑅𝑅 𝜆𝜆𝜆𝜆 + 𝑇𝑇 𝐶𝐶2 = 𝜇𝜇𝜇𝜇 𝐶𝐶2

Or now that we are in the same 
coordinate system: 

𝑅𝑅 𝜆𝜆𝜆𝜆 + 𝑇𝑇 = 𝜇𝜇𝜇𝜇

𝑋𝑋 𝐶𝐶2 = 𝑅𝑅 𝑋𝑋 𝐶𝐶1 + 𝑇𝑇



Two Calibrated Views of the Same 3D Scene

𝑅𝑅 𝜆𝜆𝜆𝜆 + 𝑇𝑇 = 𝜇𝜇𝜇𝜇



PnP vs. 2-View Structure from Motion (SfM)

PnP
1. Gn. “world frame” points 𝑃𝑃𝑖𝑖  

and corresponding calibrated 
coordinates 𝐾𝐾−1𝑥𝑥𝑖𝑖

2. Set camera frame 3D 
coordinates (with scale/depth 
ambiguity) to 𝜆𝜆𝑖𝑖𝐾𝐾−1𝑥𝑥𝑖𝑖

3. Then solve (for 𝑅𝑅,𝑇𝑇, 𝜆𝜆):

𝜆𝜆𝑖𝑖𝐾𝐾−1𝑥𝑥𝑖𝑖 = 𝑅𝑅𝑃𝑃𝑖𝑖 + 𝑇𝑇 ∀𝑖𝑖 

Where 𝑅𝑅,𝑇𝑇 denotes 
transformation between camera 
and world.

Structure from Motion
1. No “world frame”. Instead, just 

calibrated image plane 
coordinates 𝜆𝜆𝑖𝑖 = 𝐾𝐾1−1𝑥𝑥𝑖𝑖1 and 
𝜇𝜇𝑖𝑖 = 𝐾𝐾2−1𝑥𝑥𝑖𝑖2 of the same 3D 
point 𝑷𝑷𝒊𝒊.

2. So corresponding camera 
frame 3D coordinates in the 
two frames are: 𝜆𝜆𝑖𝑖𝜆𝜆𝑖𝑖 and 𝜇𝜇𝑖𝑖𝜇𝜇𝑖𝑖.

3. Now solve for “motion 
between cameras” 𝑅𝑅,𝑇𝑇 and 
the scales 𝜆𝜆𝑖𝑖 ,𝜇𝜇𝑖𝑖 (which permit 
getting 3D coordinates of 𝑃𝑃𝑖𝑖  in 
either camera frame)



SfM, SLAM, Visual Odometry
• “SfM” (structure from motion): graphics and computer vision folks 

interested mainly in building 3D models of scenes/objects. Images could be 
unordered, from multiple different cameras taking pictures of the same 3D 
scene/object. Usually performed offline.

• “VO” (visual odometry): mainly interested in localizing and tracking the 
robot alone, i.e. how far has it traveled in what direction, what speed etc. 
over short time window. Images usually frames of a video captured from a 
moving camera in a static / close-to-static world. Often performed online, 
as images stream in. Usually a single pre-calibrated camera.

• “SLAM” (simultaneous localization and mapping): Jointly estimating 3D 
models of scenes and localizing the robot (camera) w.r.t. that scene. Images 
similar to VO, also streaming, but emphasis on long-term map consistency. 
VO++. We’ll see an example of a SLAM system later.
Methods largely the same, with differences in emphases depending on 

which output (depths, transformations, or both) matter most.





SfM Application: Building Rome in a Day

https://grail.cs.washington.edu/rome/ (2009-11)

SfM techniques applied to Flickr image collections!

https://grail.cs.washington.edu/rome/


SfM Application: 3D Presidential Portrait

https://www.youtube.com/watch?v=4GiLAOtjHNo

Really MVS 
rather than SfM, 
since the camera 

locations are 
fully known.

https://www.youtube.com/watch?v=4GiLAOtjHNo


SfM is the main ingredient of Visual Odometry

Kostas Daniilidis



SLAM for Driving in DARPA Grand Challenge (circa 2007)

Kostas Daniilidis, UPenn 4th place entry in the DARPA Grand challenge 2007





“Epipolar Constraints” Between Two Views of a Scene

𝑅𝑅 𝜆𝜆𝜆𝜆 + 𝑇𝑇 = 𝜇𝜇𝜇𝜇

𝝁𝝁𝑖𝑖𝑇𝑇 𝑇𝑇 × 𝑅𝑅𝒑𝒑𝑖𝑖 = 0



Review: Mixed Product = Volume of Parallelepiped

Wikipedia

In our setting, 𝜇𝜇,𝑅𝑅𝜆𝜆,𝑇𝑇 are 
edges of a triangle because 

𝜆𝜆𝑅𝑅𝒑𝒑 + 𝑻𝑻 = 𝜇𝜇𝝁𝝁
(which is the triangle rule 
for vectors).

And triangles are planar! 

Fun fact: this is also the 
determinant of a matrix with 
columns a, b, c.



Geometric Meaning of Epipolar Constraint

Epipolar constraint = 
“image rays from the world 
point to the two cameras 
lies on the same plane as 
the baseline (translation 
vector) connecting the 
camera centers.”

Again, these are just the 
edges of a triangle with the 
2 camera centers and the 
world point  as vertices, so 
naturally coplanar!





Epipolar “Planes” and “Lines”

ZH Fig 9.1

Epipolar planes are planes containing the baseline. 
Any 3D point induces a corresponding epipolar plane. 
Intersection of this plane with an image plane = epipolar line for that 3D point.

baseline



“Epipolar Lines” Pass Through “Epipoles”

“epipolar lines”

𝑒𝑒𝑝𝑝~ −𝑅𝑅𝑇𝑇 𝑇𝑇 and 𝑒𝑒𝑞𝑞~𝑇𝑇 are the “epipoles” = images of the other 
camera center on each plane = intersections of baseline T with 
the two planes = VP of the translation direction in each plane.  

All epipolar lines in each image plane pass through its epipole.



Epipolar Constraints

Gives us an equation in unknowns: R, T => route to an SfM solution?

Q: If this were linear in 𝑅𝑅,𝑇𝑇, we could solve it with enough (𝜆𝜆𝑖𝑖 , 𝜇𝜇𝑖𝑖) pairs 
i.e. 2D->2D correspondences. Is it linear though?
A: No, but through a change of variables, we will soon make the equation 
linear in some new unknowns.

𝝁𝝁𝑖𝑖𝑇𝑇 𝑇𝑇 × 𝑅𝑅𝒑𝒑𝑖𝑖 = 0

Also note: we are not only interested in 𝑅𝑅,𝑇𝑇 (the “motion”). We also want 
to solve for the depths 𝜆𝜆𝑖𝑖 ,𝜇𝜇𝑖𝑖 afterwards (the “structure’’).



𝑅𝑅 𝜆𝜆𝜆𝜆 + 𝑇𝑇 = 𝜇𝜇𝜇𝜇

Want to solve for R, T.
Can we make this look more like 
standard linear equations containing  
matrix products etc.?

Epipolar Constraints



Review: Cross-products through skew-symmetric matrices

Wikipedia on cross product

Sometimes written as �𝑎𝑎. Remember, this is now a 3 × 3 matrix, while original 
𝑎𝑎, 𝑏𝑏 were 3x1 vectors.



The Essential Matrix 𝐸𝐸

Now linear in the new unknowns 𝐸𝐸3×3 ! But will need to recover 𝑇𝑇3×1 ,𝑅𝑅3×3 later.

We had: 𝝁𝝁𝑖𝑖𝑇𝑇 𝑇𝑇 × 𝑅𝑅𝒑𝒑𝑖𝑖 = 0

⇒ 𝝁𝝁𝑖𝑖𝑇𝑇( �𝑇𝑇𝑅𝑅)  𝒑𝒑𝑖𝑖 = 0

Renaming 𝐸𝐸 = ( �𝑇𝑇𝑅𝑅):

𝝁𝝁𝑖𝑖𝑇𝑇𝐸𝐸 𝒑𝒑𝑖𝑖 = 0

“Essential matrix”



Is the epipolar constraint really linear in E?

Longuet-Higgins 1981

𝜇𝜇𝑖𝑖𝑇𝑇𝐸𝐸3×3𝜆𝜆𝑖𝑖 = 0 is a single equation that is linear in the elements of 𝐸𝐸
Can write this out explicitly as below.



Fundamental matrix

• Essential matrix E connects image plane coordinates i.e. “calibrated 
coordinates” for points 𝜆𝜆 = 𝐾𝐾𝑝𝑝−1 𝑢𝑢𝑝𝑝, 𝑣𝑣𝑝𝑝, 1 𝑇𝑇

 and 𝜇𝜇 = 𝐾𝐾𝑞𝑞 −1 𝑢𝑢𝑞𝑞 , 𝑣𝑣𝑞𝑞 , 1 𝑇𝑇
.

• Fundamental matrix 𝐹𝐹 assumes that we are still in “pixel land”

• So:
𝜇𝜇𝑇𝑇𝐸𝐸𝜆𝜆 = 0 can be written as: 𝐾𝐾𝑞𝑞𝜇𝜇

𝑇𝑇𝐹𝐹 𝐾𝐾𝑝𝑝𝜆𝜆 = 0

ZH 9.6





Epipolar Lines in Essential Matrix Notation

Exercise: What about in q-plane?



Epipolar Lines Constrain Point Correspondences!

𝜆𝜆𝑖𝑖 and the two camera 
centers determine a 
plane (which also 
contains the world 
point 𝑃𝑃𝑖𝑖)

The relevant right 
epipolar line is the 
image of this plane 
= image of the left 
ray through the 
right camera.

Given a point p = left image of a world point, the right image of that point is 
constrained to lie on the corresponding right epipolar line, and vice versa. 
(depending on depth of the world point). 



Epipolar Lines Constrain Point Correspondences!

ZH Ch9



Special case: “frontoparallel” / “parallel stereo” cameras

Q: Where is the epipole = image of other camera center in each image?
A: Baseline is parallel to image plane(s) => epipole is at infty along x, and 
epipolar line is horizontal. 

Correspondences are 
restricted to the “same” row 
in the other image!

C C’

X

p q



What if the cameras are “frontoparallel” / “parallel 
stereo”?

Sanja Fidler, CSC420





Collecting Epipolar Lines into Epipolar “Pencils”

ZH Ch9



Epipolar “Pencils”

Zh Ch9

The epipolar lines in each image plane form a “pencil” whose tip is the 
epipole i.e. image of the other camera center / intersection of baseline with 
image plane. (Because all epipolar planes contain the baseline, after all)



Epipolar Pencils of Frontoparallel Cameras

ZH Ch 9



Epipolar Pencils visually identify camera orientations 

ZH Ch9



Epipolar Pencils visually identify camera orientations 

ZH Ch9



Summary so far (Essential matrix and Epipolar Stuff)

• Essential matrix contains information about 𝑅𝑅,𝑇𝑇 between two views, 
provides “epipolar constraint” equations that might help identify E and 
eventually solve the SfM problem.

• Geometric intuitions connected to epipoles, epipolar planes, lines, pencils. 
Just visualizing epipolar pencils already gives us qualitative information 
about the relative orientations of the two camera views, hinting at the 
utility of these concepts for SfM.

• Epipolar lines directly constrain point correspondences, will be useful for 
later on in the course.
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