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Administrivia

• Midterm exam coming up
 Date reminder: Wednesday March 26 (class hours, we’ll start at 12 noon exactly)
 Syllabus: All material covered in class until Wed March 19. 
 Review questions pdf will be released on Canvas by this week, solutions will be 

out on Mon March 17, review lecture on Mon March 24. Try solving over the 
Spring Break!
 If you are unable to attend the midterm exam in person on March 26, please 

complete the form by March 17: https://forms.gle/TCWYHAYn4Hd324BN9

 Also, you need to contact the Weingarten Office for academic accommodations and 
send me the paperwork or approval from the Weingarten Office. 

https://forms.gle/TCWYHAYn4Hd324BN9
https://weingartencenter.universitylife.upenn.edu/academic-accommodations/


Administrivia

• Next week is Spring Break, no class.
• HW 2 deadline is tomorrow.



Recap: Two Calibrated Views of the Same 3D Scene

𝑅𝑅 𝜆𝜆𝜆𝜆 + 𝑇𝑇 = 𝜇𝜇𝜇𝜇



Recap: “Epipolar Constraints” Between Two Views of a 
Scene

𝑅𝑅 𝜆𝜆𝑝𝑝 + 𝑇𝑇 = 𝜇𝜇𝑞𝑞

𝒒𝒒𝑖𝑖𝑇𝑇 𝑇𝑇 × 𝑅𝑅𝒑𝒑𝑖𝑖 = 0



Recap: Epipolar “Planes” and “Lines”

ZH Fig 9.1

Epipolar planes are planes containing the baseline. 
Any 3D point induces a corresponding epipolar plane. 
Intersection of this plane with an image plane = epipolar line for that 3D point.

baseline



Recap: “Epipolar Lines” Pass Through “Epipoles”

“epipolar lines”

𝑒𝑒𝑝𝑝~ −𝑅𝑅𝑇𝑇 𝑇𝑇 and 𝑒𝑒𝑞𝑞~𝑇𝑇 are the “epipoles” = images of the other 
camera center on each plane = intersections of baseline T with 
the two planes = VP of the translation direction in each plane.  

All epipolar lines in each image plane pass through its epipole.



Recap: Epipolar “Pencils”

Zh Ch9

The epipolar lines in each image plane form a “pencil” whose tip is the 
epipole i.e. image of the other camera center / intersection of baseline with 
image plane. (Because all epipolar planes contain the baseline, after all)



Recap: Epipolar Constraints

Gives us an equation in unknowns: R, T => route to an SfM solution?

Q: If this were linear in 𝑅𝑅,𝑇𝑇, we could solve it with enough (𝑝𝑝𝑖𝑖 , 𝑞𝑞𝑖𝑖) pairs 
i.e. 2D->2D correspondences. Is it linear though?
A: No, but through a change of variables, we will soon make the equation 
linear in some new unknowns.

𝒒𝒒𝑖𝑖𝑇𝑇 𝑇𝑇 × 𝑅𝑅𝒑𝒑𝑖𝑖 = 0

Also note: we are not only interested in 𝑅𝑅,𝑇𝑇 (the “motion”). We also want 
to solve for the depths 𝜆𝜆𝑖𝑖 ,𝜇𝜇𝑖𝑖 afterwards (the “structure’’).



𝑅𝑅 𝜆𝜆𝜆𝜆 + 𝑇𝑇 = 𝜇𝜇𝜇𝜇

Want to solve for R, T.
Can we make this look more like 
standard linear equations containing  
matrix products etc.?

Epipolar Constraints



Review: Cross-products through skew-symmetric matrices

Wikipedia on cross product

Sometimes written as �𝑎𝑎. Remember, this is now a 3 × 3 matrix, while original 
𝑎𝑎, 𝑏𝑏 were 3x1 vectors.



The Essential Matrix 𝐸𝐸

Now linear in the new unknowns 𝐸𝐸3×3 ! But will need to recover 𝑇𝑇3×1 ,𝑅𝑅3×3 later.

We had: 𝒒𝒒𝑖𝑖𝑇𝑇 𝑇𝑇 × 𝑅𝑅𝒑𝒑𝑖𝑖 = 0

⇒ 𝒒𝒒𝑖𝑖𝑇𝑇( �𝑇𝑇𝑅𝑅)  𝒑𝒑𝑖𝑖 = 0

Renaming 𝐸𝐸 = ( �𝑇𝑇𝑅𝑅):

𝒒𝒒𝑖𝑖𝑇𝑇𝐸𝐸 𝒑𝒑𝑖𝑖 = 0

“Essential matrix”



Is the epipolar constraint really linear in E?

Longuet-Higgins 1981

𝑞𝑞𝑖𝑖𝑇𝑇𝐸𝐸3×3𝑝𝑝𝑖𝑖 = 0 is a single equation that is linear in the elements of 𝐸𝐸
Can write this out explicitly as below.



Epipolar Lines in Essential Matrix Notation



Epipolar Lines Constrain Point Correspondences!

𝑝𝑝𝑖𝑖 and the two camera 
centers determine a 
plane (which also 
contains the world 
point 𝑃𝑃𝑖𝑖)

The relevant right 
epipolar line is the 
image of this plane 
= image of the left 
ray through the 
right camera.

Given a point p = left image of a world point, the right image of that point is 
constrained to lie on the corresponding right epipolar line, and vice versa. 
(depending on depth of the world point). 



Epipolar Lines Constrain Point Correspondences!

ZH Ch9



Epipolar Lines Constrain Point Correspondences!

ZH Ch9



Special case: “frontoparallel” / “parallel stereo” cameras

Q: Where is the epipole = image of other camera center in each image?
A: Baseline is parallel to image plane(s) => epipole is at infty along x, and 
epipolar line is horizontal. 

Correspondences are 
restricted to the “same” row 
in the other image!

C C’

X

p q



What if the cameras are “frontoparallel” / “parallel 
stereo”?

Sanja Fidler, CSC420





Longuet-Higgins’ 8-Point Algorithm

Hugh Christopher Longuet-Higgins, quantum chemist 
turned cognitive scientist. 1981

Also see: Hartley 1997: “In defense of the 8-point 
algorithm”

https://ieeexplore.ieee.org/abstract/document/601246?casa_token=XWOv58ke2OwAAAAA:WPswkyQbv8tdzoIjMjdZpp0apqiDm6EppT68ASE5K2C4sDPqYhNtgEs_JP8dO1G2KX9_D53ccg
https://ieeexplore.ieee.org/abstract/document/601246?casa_token=XWOv58ke2OwAAAAA:WPswkyQbv8tdzoIjMjdZpp0apqiDm6EppT68ASE5K2C4sDPqYhNtgEs_JP8dO1G2KX9_D53ccg


8-Point Algorithm

• Recall that each correspondence gives us one linear equation in the 
unknowns 𝐸𝐸

Longuet-Higgins 1981

“𝒂𝒂𝟏𝟏×𝟗𝟗”
“𝑬𝑬𝑬𝟗𝟗×𝟏𝟏”



8-Point Algorithm

Longuet-Higgins 1981

One row per point correspondence

Does this remind you of something?
Hint: 4-Point Collineations, PnP, …

Solution: As before, set 𝐸𝐸𝐸 to the last right singular vector of 𝐴𝐴𝑛𝑛×9

𝑛𝑛 × 9



Review: EigenValue and SVD



Rank of A in the 8-Point Algorithm

Problem: What if we have >8 points and 𝐴𝐴𝑛𝑛×9 is full-rank (i.e. rank 9)? 
Not a problem! The last singular vector of A already solves for:

argmin
𝐸𝐸𝐸:||𝐸𝐸𝐸||2=1

||𝐴𝐴𝐴𝐴𝐴||2 ,

which is the closest thing to finding a null vector for a non-singular matrix

Problem: 𝐴𝐴 may be too low-rank. For example, with perfect measurements, 
𝐴𝐴 is rank 8 only if points do not all lie on any “quadric” surface*, including 
planes, cylinders, ellipsoids etc. Otherwise, rank(𝐴𝐴) < 8! This can happen 
quite frequently in practice, e.g., smartphone moving facing a wall.
No real solution. Avoid relying on correspondences exclusively from such 
surfaces to the extent possible. If still rank < 8, give up on that pair of views.

*https://tutorial.math.lamar.edu/classes/calciii/quadricsurfaces.aspx

https://tutorial.math.lamar.edu/classes/calciii/quadricsurfaces.aspx


After solving for 𝐸𝐸, not Quite Done Yet!
𝐸𝐸 = �𝑇𝑇𝑅𝑅 has fewer than 8 DOF. 𝑇𝑇 has 3 DOF (+3), 𝑅𝑅 has 3 DOF (+3), and 𝐸𝐸 is 
scale invariant (−1), so total 5 DOF.  So not all 3x3 matrix is a valid essential 
matrix. 

• Problem: Given the above, how to ensure that the estimated 𝐸𝐸 is a valid 
essential matrix?

• Problem: How to decompose 𝐸𝐸 into the �𝑇𝑇,𝑅𝑅 required in SfM?

We will revisit these problems soon!

*https://tutorial.math.lamar.edu/classes/calciii/quadricsurfaces.aspx

https://tutorial.math.lamar.edu/classes/calciii/quadricsurfaces.aspx


Note: Do we really need 8 Points to solve SfM?

• Actually, there are methods for SfM with as few as 5 point 
correspondences, corresponding to 5 degrees of freedom in 𝑅𝑅,𝑇𝑇 (minus 
scale ambiguity)

• But much like our P3P Step 1, these involve solving complicated systems of 
higher degree equations. Instead, the 8-point algorithm offers a “direct” 
solution by solving a linear system of equations, and is widely used due to 
its convenience. (Much like the “direct solution” we saw for PnP, which 
needed 6 > 3 2D-3D point correspondences for PnP)



Note: SfM Scale Ambiguity Illustration
Remember, all you are given is calibrated 
coordinate correspondences between 2 image 
planes. 
So, suppose one solution to SfM is 𝑅𝑅,𝑇𝑇, 𝜆𝜆, 𝜇𝜇.
Then, an equally valid solution is 𝑅𝑅, 𝑐𝑐𝑐𝑐, 𝑐𝑐𝑐𝑐, 𝑐𝑐𝑐𝑐!

𝜆𝜆𝜇𝜇
c𝜆𝜆

c𝜇𝜇

𝑇𝑇

c𝑇𝑇

Scale ambiguity applies to 
purely visual SfM. If you 
have access to an 
accelerometer on a moving 
camera, can resolve scale 
ambiguity! (“Visual inertial 
odometry”).



SfM Scale Ambiguity and Miniature Movie Sets!

https://youtu.be/v59kwB37xQo?t=464

Grand “establishing shots”  
in movies are often filmed 
with miniature sets (and 
green screens for 
background)

No one can tell, because of 
scale ambiguity!

https://youtu.be/v59kwB37xQo?t=464


Fundamental matrix

• Essential matrix E connects image plane coordinates i.e. “calibrated 
coordinates” for points 𝑝𝑝 = 𝐾𝐾𝑝𝑝−1 𝑢𝑢𝑝𝑝, 𝑣𝑣𝑝𝑝, 1 𝑇𝑇

 and 𝑞𝑞 = 𝐾𝐾𝑞𝑞 −1 𝑢𝑢𝑞𝑞 , 𝑣𝑣𝑞𝑞 , 1 𝑇𝑇
.

• Fundamental matrix 𝐹𝐹 assumes that we are still in “pixel land”

• So:
𝑞𝑞𝑇𝑇𝐸𝐸𝐸𝐸 = 0 can be written as: 𝐾𝐾𝑞𝑞𝑞𝑞

𝑇𝑇𝐹𝐹 𝐾𝐾𝑝𝑝𝑝𝑝 = 0

ZH 9.6
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