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Administrivia

* Midterm exam coming up
= Date reminder: Wednesday March 26 (class hours, we’ll start at 12 noon exactly)
= Syllabus: All material covered in class until Wed March 19.

= Review questions pdf will be released on Canvas by this week, solutions will be
out on Mon March 17, review lecture on Mon March 24. Try solving over the
Spring Break!

= |f you are unable to attend the midterm exam in person on March 26, please
complete the form by March 17: https://forms.gle/TCWYHAYn4Hd324BN9

= Also, you need to contact the weingarten Office for academic accommodations and
send me the paperwork or approval from the Weingarten Office.



https://forms.gle/TCWYHAYn4Hd324BN9
https://weingartencenter.universitylife.upenn.edu/academic-accommodations/

Administrivia

* Next week is Spring Break, no class.
* HW 2 deadline is tomorrow.



Recap: Two Calibrated Views of the Same 3D Scene

R(Ap) +T = uq

Given 2D correspondences (p,q)

Find motion R, T and depths A, u.




Recap: “Epipolar Constraints” Between Two Views of a
Scene

We can eliminate the depths from R(Ap) + T = uq and obtain the epipolar
constraint:

q! (T X Rpy) =0



Recap: Epipolar “Planes” and “Lines”
X

epipolar plane 7T \

X
2/\ | |
. / °
C baseline C
epipolar line
for x

Epipolar planes are planes containing the baseline.
Any 3D point induces a corresponding epipolar plane.
Intersection of this plane with an image plane = epipolar line for that 3D point.




Recap: “Epipolar Lines” Pass.Through “Epipoles”

NP . .
S epipolar lines” S
7
N 7
S T

ep ~ —RTT eqg~T

ey~ —RT T and e,~T are the “epipoles” = images of the other

camera center on each plane = intersections of baseline T with
the two planes = VP of the translation direction in each plane.

All epipolar lines in each image plane pass through its epipole.



Recap: Epipolar “Pencils”

I”

The epipolar lines in each image plane form a “pencil” whose tip is the
epipole i.e. image of the other camera center / intersection of baseline with
image plane. (Because all epipolar planes contain the baseline, after all)



Recap: Epipolar Constraints

q; (T X Rp;) =0
Gives us an equation in unknowns: R, T => route to an SfM solution?

Q: If this were linear in R, T, we could solve it with enough (p;, q;) pairs
l.e. 2D->2D correspondences. Is it linear though?

A: No, but through a change of variables, we will soon make the equation
linear in some new unknowns.

Also note: we are not only interested in R, T (the “motion”). We also want
to solve for the depths A;, u; afterwards (the “structure”).



EplpOIar ConStI’aIntS Want to solve for R, T.

Can we make this look more like
standard linear equations containing
matrix products etc.?

( N\

We can eliminate the depths from R(1¥) + T = uq and obtain the epipolar
constraint:

¢ (T x Rp) =0



Review: Cross-products through skew-symmetric matrices

The vector cross product also can be expressed as the product of a skew-symmetric matrix and a vector:

— — o —

0 —a3 as b
axb=la,b=1] a3 0 —a;|]|bs
_—-ﬂ;g 11 D _ _b;_

Sometimes written as a@. Remember, this is now a 3 X 3 matrix, while original
a, b were 3x1 vectors.



The Essential Matrix E

We had: q; (T X Rp;) = 0
= q; (TR) p;=0

Renaming E = (TR):

qiEp; =0

ep ~ —RI'T eq~ T

“Essential matrix”

Now linear in the new unknowns E3+3 ! But will need to recover T3y, R3x3 later.



s the epipolar constraint really linear in E?

qiTE3x3pi = 0 is a single equation that is linear in the elements of E
Can write this out explicitly as below.

If
E:(el €92 83)

then epipolar constraint can be rewritten as

T
q" (61 €2 63) (Py) = q' (P:cel T Py€2 +Pz€3)
pz
€1
= (p=q" pya’ pqh) (82) =0
e3

This equation is linear



Epipolar Lines in Essential Matrix Notation

Equation ¢/ Ep = 0 is a line equation in the p-plane with line coefficients
ETq. It is called the epipolar line in p-plane.



Epipolar Lines Constrain Point Correspondences!

The relevant right
epipolar line is the
image of this plane
= image of the left
ray through the

righ>t camera.

A
p; and the two camera

centers determine a
plane (which also
contains the world
point P;)

N~
ep ~ —RIT eq~ T

Given a point p = left image of a world point, the right image of that point is

constrained to lie on the corresponding right epipolar line, and vice versa.

(depending on depth of the world point).



Epipolar Lines Constrain Point Correspondences!

epipolar line
for x



Epipolar Lines Constrain Point Correspondences!

Epipolarline

epipolar line
for x

Knowledge of the E-matrix allows us to search for points g corresponding
to points p along the epipolar line, reducing correspondence to 1D-search.

Position of the corresponding point g along epipolar line varies with depth
of the 3D points which is still constrained to lie on the ray through p.



Special case: “frontoparallel” / “parallel stereo” cameras

X
Correspondences are

restricted to the “same” row
in the other image!

P q

co oo

Q: Where is the epipole = image of other camera center in each image?
A: Baseline is parallel to image plane(s) => epipole is at infty along x, and
epipolar line is horizontal.




What if the cameras are “frontoparallel” / “parallel
stereo”?

left image right image






Longuet-Higgins’ 8-Point Algorithm

Hugh Christopher Longuet-Higgins, quantum chemist
turned cognitive scientist. 1981

Also see: Hartley 1997: “In defense of the 8-point
algorithm”

Nawure Vol, 293 10 Seprember 1981
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A computer algorithm for
reconstructing
a scene from two projections

H. C. Longuet-Higgins
Laharatary of Experimental Psychology, Liniversity of Sussex,
Brightan BN1 900G, UK

A simple algorithm for P ithe ithr struc-
ture of @ scene from a correlated palr of perspective projections
Is deseribed here, when the spatlal relationship between the two
projections is unknown. This problem is relevant not only 1o
photographic surveying' but slso to binocular vision®, where the
non-visual information available to the observer about the
orientation and focal length of each eye Is much less accurate
than the optical information supplied by the retinal images
themselves. The problem also arises in monocular perception of
motion”, where the two projections represent views which are
separated in thve as well as space. As Marr and Poggio® have
noted, the fusing of two images to produce a three-dimensional
percept involves iwo distinct processes: ihe establishmeni of a
1:1 correspondence between image points in the two views—
the ‘correspondence problem’—and the use of the associated
disparities for determining the distances of visible elements in
the scene. [ shall pssume thet the correspondence problem has
been solved; the problem of reconstructing the scene then
reduces to that of finding the relative orlentation of the two
viewpoints.

Photogrammetrists know that if a scene is photographed from
two viewpoints, then the relationship between the camera posi-
tons is uniquely determined, in general, by the photographic
coordinates of just five distinguishable points; but actually
ealeulating the structure of the scene from five sete of image
coordinates involves the iterative solution of five simultaneous
third-order equations’. [ show here that if the scene contains as
many as eight points whose images can be located in each
prajection, then the relative orientation of the two projections,
and the structure of the scene, can be computed, in general, from
the cight sets of image coordinates by a direct method which

calls for mlllinj mofe difficult than the solution of a set of
simultaneous linear equations.

Let P be a visible point in the scene, and let (X, X;, X,) and
(X, X3, X3) be its three-dimensional cartesian coordinates with
respect to the two viewpoints. The ‘forward’ coordinates X, and
X3 are necessarily positive. The image coordinates of P in the
two views may then be defined as

(e, b= (X /X5, Mg/ X,
i, xah= (Xi/ X5 X3/ X5

and it i convenient to supplement them with the dummy
coordinates

)

n=1, x=1 2)
50 that one can then write
A= K/ Xay n=XUX (mr=11,3) (3)
As the two sets of three-dimensional coordinates are connected
by an arbitrary displacement, we may wrine
Xi=R.IX.-T.) (4]
where T i an unknown translational vector and R is an unknpown
rigid rotation matrix. (In this and subsequent equations I sum

over repeated Greek subscripts.) The rotation R satisfies the
relationships

RR=1-RR, daR-1i (%)
and it is convenient to adopt the length of the vector T as the unit
of distance:

TH=Ti+Ti+Ti=1 6)

1 begin by establishing a general reb nship between the two
sets of image coordinates—i relationship which expresses the
condition that corresponding rays through the two centres of
projection must intersect in spece. We define a new matrix O by
Q=R5 mn

where § is the skew-symmetric matrix

0 T, T,
§= "_ T. 0 T {8)
LT T, 0
Equation (8) may be written as
8. =e.T. 9

where g, =0 unless (A, & &) is a permutation of (1, 2, 3), in
which case £,,, = 21 depending on whether this permutation is
even or odd. It follows from equations (4)-(9) that

XiQu X, = R (X~ TR T X,
= (X -TeT.X, (10}
bt because the quantity £, ., i antisymmetric in every pair of its
subscripts, the right-hand side vanishes identically:
X.0.X, =0 (11}
Dividing equation (11) by X3X, we arrive at the desired rela-
tionship between the image coordinates:
QX =0 (12)
The next step is to determine the nine elements ... There will
be one equation of type (12) for every paint Py, namely
(xox. 00, =0 (13)
and in this equation the nine guantities (x,x, ), are presumed (o
be known. The ratios of the nine unknowns Q3,,, can therefore be
obtained, in general, by solving eight simultaneous linsar equa-
tions of type (13), one for each of eight visible points Py, .. ., Py,
I shall not yet discuss the special circumstances under which the
solution fails; for the present merely note that if the eight

equations (13) are independent, their solution is entirely
straightforward from a computational point of view,

(MR-, 73043108010

@ 198 Macmillan Tourak Lid


https://ieeexplore.ieee.org/abstract/document/601246?casa_token=XWOv58ke2OwAAAAA:WPswkyQbv8tdzoIjMjdZpp0apqiDm6EppT68ASE5K2C4sDPqYhNtgEs_JP8dO1G2KX9_D53ccg
https://ieeexplore.ieee.org/abstract/document/601246?casa_token=XWOv58ke2OwAAAAA:WPswkyQbv8tdzoIjMjdZpp0apqiDm6EppT68ASE5K2C4sDPqYhNtgEs_JP8dO1G2KX9_D53ccg

8-Point Algorithm

e Recall that each correspondence gives us one linear equation in the
unknowns E

o

A1x9

)

Is this really linear in E?

q! E5«3p; = 0 is a single equation that is linear in the elements of E
Can write this out explicitly as below.

If
FE = (61 €9 63)

then epipolar constraint can be rewritten as

x
a’ (61 €2 63) (py) = q" (pxel + Dye2 +Pz€3)
'z

e1
(p=q” pya® p2q") (62) =0
e3

This equation is linear

e nl ”
E 9x1



8-Point Algorithm

Let @ = (pzq’ pyq’ p2q”)

al
()

E' = .
0 One row per point correspondence

T
\a”nx9

where a; is the known 1 x 9 vector of image points and E’ is the essential
matrix re-organized into a 9 x 1 column vector.

T
/gé\
E' has to be in the null-space of | " |. Does this remind you of something?
\ag/ Hint: 4-Point Collineations, PnP, ...

Solution: As before, set E’ to the last right singular vector of A, ¢




Review: EigenValue and SVD

EigenValue, SVD

Eigenvalue XV =0V
Eigenvalue decomposition X = [JX{/~'  Here, X is square, U/ is invertible and ¥ is diagonal matrix.
o, Here, o is the eigenvalue of X.
- o - i is the ecigenvector of X, in unit length.
= % U=|u| Uy ... Uy € ’ g
a

If X is symmetric X = UZUT Here U is orthogonal.

What if X is not square ?

X'x=vz v’
xx"=vux,u"
SVD X=Uuzv"

% Penn rn rineering

EigenValue, SVD

SVD tells you that a linear transformation is consist of :

rotation + stretching + rotation

Xv = UZV_TV

Rotation
Stretch
Rotation
1 |
Lo i ol
32 2] _|v2 4
23—2__I¢ 030 N T
V22 2 2 1
3 T3 3
A U vT

Why H is the last column of V ?

@ Penn Englm'vrmg



Rank of A in the 8-Point Algorithm

Problem: What if we have >8 points and A,,q is full-rank (i.e. rank 9)?

Not a problem! The last singular vector of A already solves for:
argmin |[|AE’||,,
Er||ET||2=1

which is the closest thing to finding a null vector for a non-singular matrix

Problem: A may be too low-rank. For example, with perfect measurements,
A is rank 8 only if points do not all lie on any “quadric” surface*, including
planes, cylinders, ellipsoids etc. Otherwise, rank(A4) < 8! This can happen
quite frequently in practice, e.g., smartphone moving facing a wall.

No real solution. Avoid relying on correspondences exclusively from such
surfaces to the extent possible. If still rank < 8, give up on that pair of views.

*https://tutorial.math.lamar.edu/classes/calciii/quadricsurfaces.aspx



https://tutorial.math.lamar.edu/classes/calciii/quadricsurfaces.aspx

After solving for E, not Quite Done Yet!

E = TR has fewer than 8 DOF. T has 3 DOF (+3), R has 3 DOF (+3), and E is

scale invariant (—1), so total 5 DOF. So not all 3x3 matrix is a valid essential
matrix.

* Problem: Given the above, how to ensure that the estimated E is a valid
essential matrix?

e Problem: How to decompose E into the T, R required in SfM?

We will revisit these problems soon!

*https://tutorial.math.lamar.edu/classes/calciii/quadricsurfaces.aspx



https://tutorial.math.lamar.edu/classes/calciii/quadricsurfaces.aspx

Note: Do we really need 8 Points to solve STM?

e Actually, there are methods for SfM with as few as 5 point
correspondences, corresponding to 5 degrees of freedom in R, T (minus
scale ambiguity)

* But much like our P3P Step 1, these involve solving complicated systems of
higher degree equations. Instead, the 8-point algorithm offers a “direct”
solution by solving a linear system of equations, and is widely used due to
its convenience. (Much like the “direct solution” we saw for PnP, which
needed 6 > 3 2D-3D point correspondences for PnP)



Note: SfM Scale Ambiguity Illustration

Remember, all you are given is calibrated

coordinate correspondences between 2 image

planes.

So, suppose one solutionto SftMis R, T, A, u.
Then, an equally valid solution is R, cT, cA, cu!

cT b

s

(

—_

Scale ambiguity applies to
purely visual STM. If you
have access to an
accelerometer on a moving
camera, can resolve scale
ambiguity! (“Visual inertial
odometry”).



SfM Scale Ambiguity and Miniature Movie Sets!

outu.be/v59kwB37xQo?t=464

Grand “establishing shots”
in movies are often filmed
with miniature sets (and
green screens for
background)

No one can tell, because of
scale ambiguity!



https://youtu.be/v59kwB37xQo?t=464

Fundamental matrix

* Essential matrix E connects image plane coordinates i.e. “calibrated
T T
coordinates” for points p = Kp_l(up,vp, 1) and q = K, _1(uq, Vg, 1) .

* Fundamental matrix F assumes that we are still in “pixel land”

* So:
g'Ep =0 can be written as: (qu)TF(Kpp) =0
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