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Recap: Two Calibrated Views of the Same 3D Scene

𝑅𝑅 𝜆𝜆𝜆𝜆 + 𝑇𝑇 = 𝜇𝜇𝜇𝜇



Recapt: “Epipolar Constraints” Between Two Views of a 
Scene

𝑅𝑅 𝜆𝜆𝜆𝜆 + 𝑇𝑇 = 𝜇𝜇𝜇𝜇

𝝁𝝁𝑖𝑖𝑇𝑇 𝑇𝑇 × 𝑅𝑅𝒑𝒑𝑖𝑖 = 0



Recap: The Essential Matrix 𝐸𝐸

Now linear in the new unknowns 𝐸𝐸3×3 ! But will need to recover 𝑇𝑇3×1 ,𝑅𝑅3×3 later.

We had: 𝝁𝝁𝑖𝑖𝑇𝑇 𝑇𝑇 × 𝑅𝑅𝒑𝒑𝑖𝑖 = 0

⇒ 𝝁𝝁𝑖𝑖𝑇𝑇( �𝑇𝑇𝑅𝑅)  𝒑𝒑𝑖𝑖 = 0

Renaming 𝐸𝐸 = ( �𝑇𝑇𝑅𝑅):

𝝁𝝁𝑖𝑖𝑇𝑇𝐸𝐸 𝒑𝒑𝑖𝑖 = 0

“Essential matrix”



Recap: 8-Point Algorithm

• Recall that each correspondence gives us one linear equation in the 
unknowns 𝐸𝐸

Longuet-Higgins 1981

“𝒂𝒂𝑪𝑪×𝟗𝟗”
“𝑬𝑬𝑬𝟗𝟗×𝑪𝑪”



Recap: 8-Point Algorithm

Longuet-Higgins 1981

One row per point correspondence

Does this remind you of something?
Hint: 4-Point Collineations, PnP, …

Solution: As before, set 𝐸𝐸𝐸 to the last right singular vector of 𝐴𝐴𝑛𝑛×9

𝑛𝑛 × 9



Recap: After solving for 𝐸𝐸, not Quite Done Yet!
𝐸𝐸 = �𝑇𝑇𝑅𝑅 has fewer than 8 DOF. 𝑇𝑇 has 3 DOF (+3), 𝑅𝑅 has 3 DOF (+3), and 𝐸𝐸 is 
scale invariant (−1), so total 5 DOF.  So not any 3x3 matrix is a valid essential 
matrix. 

• Problem: Given the above, how to ensure that the estimated 𝑬𝑬 is a valid 
essential matrix?

• Problem: How to decompose 𝑬𝑬 into the �𝑻𝑻,𝑹𝑹 required in SfM?

*https://tutorial.math.lamar.edu/classes/calciii/quadricsurfaces.aspx

https://tutorial.math.lamar.edu/classes/calciii/quadricsurfaces.aspx


Review:

• Singular Value Decomposition (SVD) 
• Eigenvalues



Constructing Valid Essential Matrices and Decomposing 
Them

Part 1: Proving ‘necessary’ (“If E is essential, then …”) will tell us 
about properties of essential matrices, so we can correct the E 
matrices from the direct method to become valid.

Part 2: Proving ‘sufficient’ (“If singular values …, then ...”) will help 
us solve 𝑅𝑅,𝑇𝑇 from 𝐸𝐸 for a particular pair of cameras.



Proof Sketch Part 1: Singular Values of A Valid Essential Matrix 

𝐸𝐸 = �𝑇𝑇𝑅𝑅,⇒ 𝐸𝐸𝑇𝑇 = 𝑅𝑅𝑇𝑇 �𝑇𝑇𝑇𝑇

𝐸𝐸 is a singular matrix (Because 𝐸𝐸 = �𝑇𝑇𝑅𝑅, and det �𝑇𝑇 = 0)

So smallest singular value is indeed zero!

For the two other singular values of 𝐸𝐸, recall that they are square roots of the 
eigenvalues of 𝐸𝐸𝐸𝐸𝑇𝑇.
Finding eigenvalues => setting det 𝐸𝐸𝐸𝐸𝑇𝑇 − 𝜆𝜆𝜆𝜆 = 0 i.e. “characteristic polynomial”

− +

a square matrix whose determinant is zero



Proof Sketch Part 1: Singular Values of A Valid Essential Matrix 

Side note: the ‘third singular vector’ of 𝐸𝐸 (null vector because 𝜎𝜎3 = 0) is nothing but 
the translation vector 𝑇𝑇 because:

𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇 = �𝑇𝑇 �𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇 × −𝑇𝑇 × 𝑇𝑇 = 0!
So we already know 𝑻𝑻 in terms of 𝑬𝑬! (the 3rd left singular vector of 𝑬𝑬)

(Bonus exercise: try this out by hand)

So, 𝜎𝜎1(𝐸𝐸) = 𝜎𝜎2(𝐸𝐸) = ||𝑇𝑇|| and 𝜎𝜎3 𝐸𝐸 = 0

− +



Proof Sketch Part 1: Singular Values of A Valid Essential Matrix 

Utility: Having obtained an initial estimate 𝐸𝐸 through direct solution of >=8 
epipolar constraints, we may enforce “condition A” above on it, by:

1. Compute SVD 𝐸𝐸 = 𝑈𝑈
𝜎𝜎1

𝜎𝜎2
𝜎𝜎3

𝑉𝑉𝑇𝑇

2. Then, set 𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑈𝑈
(𝜎𝜎1 + 𝜎𝜎2)/2

(𝜎𝜎1 + 𝜎𝜎2)/2
0

𝑉𝑉𝑇𝑇

We don’t yet know how to get 𝑹𝑹,𝑻𝑻 from 𝑬𝑬

This satisfies 
argmin
𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛

||𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛 − 𝐸𝐸||𝐹𝐹2  s.t. 

𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛 meets “condition A”.

Since E is scale-invariant, 
optionally, can also just 

set Σ to 𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑(1,1,0)

Condition A





Proof Part 2: Construction of 𝐸𝐸 as �𝑇𝑇𝑅𝑅

i.e. valid rotation matrix 𝑅𝑅, orthonormal with determinant +1 (right-handed coordinate system)



Proof Part 2: Construction of 𝐸𝐸 as �𝑇𝑇𝑅𝑅 
Consider the simplest matrix satisfying 𝜎𝜎1 = 𝜎𝜎2 and 𝜎𝜎3 = 0:

1 0 0
0 1 0
0 0 0

It indeed can be decomposed into antisymmetric / skew and rotation, e.g.:
1 0 0
0 1 0
0 0 0

= −
0 1 0
1 0 0
0 0 0

×
0 −1 0
1 0 0
0 0 1

          skew-symmetric �𝑇𝑇−𝑧𝑧  x rotation 𝑅𝑅𝑧𝑧,𝜋𝜋/2

   𝑇𝑇−𝑧𝑧 =
0
0
−1

 and rotation by 90° about z axis

#1



Proof Part 2: Construction of 𝐸𝐸 as �𝑇𝑇𝑅𝑅

#2

Now let’s put #1 and #2 together

We need one more piece before we can prove this.

It doesn’t matter whether you rotate first and then take cross-product or the 
other way around.  i.e., For a rotation 𝑅𝑅, 𝑅𝑅 𝒂𝒂 × 𝒃𝒃 = 𝑅𝑅𝒂𝒂 × 𝑅𝑅𝒃𝒃



Proof Part 2: Construction of 𝐸𝐸 as �𝑇𝑇𝑅𝑅

= 𝜎𝜎𝑈𝑈 �𝑇𝑇−𝑧𝑧𝑅𝑅𝑧𝑧,𝜋𝜋/2𝑉𝑉𝑇𝑇 

= 𝜎𝜎𝑈𝑈 �𝑇𝑇−𝑧𝑧𝑈𝑈𝑇𝑇𝑈𝑈𝑅𝑅𝑧𝑧,𝜋𝜋/2𝑉𝑉𝑇𝑇 

= 𝜎𝜎 ( �𝑈𝑈𝑇𝑇−𝑧𝑧) 𝑈𝑈𝑅𝑅𝑧𝑧,𝜋𝜋/2𝑉𝑉𝑇𝑇  

For a general essential matrix 𝐸𝐸 that has two equal singular values and one 
singular value 0, we can write:

𝑈𝑈𝑇𝑇𝑈𝑈 = 𝜆𝜆

#1

#2



Proof Part 2: Construction of 𝐸𝐸 as �𝑇𝑇𝑅𝑅

*We’ll soon see the sign flipping isn’t a big deal

𝐸𝐸 = 𝜎𝜎( �𝑈𝑈𝑇𝑇−𝑧𝑧) 𝑈𝑈𝑅𝑅𝑧𝑧, 𝜋𝜋/2𝑉𝑉𝑇𝑇  

For a general essential matrix 𝐸𝐸, we can write it as the product of a skew-
symmetric matrix, and an orthogonal matrix:

Skew symmetric, since it represents cross 
product with 𝑈𝑈𝑇𝑇−𝑍𝑍 = the last column of U= 
last left singular vector of E (w. flipped sign)

orthogonal, since 
product of orthogonal 

matrices

𝑇𝑇= last left singular vector of E 
(w. flipped sign*)

𝑅𝑅

Q: Is this the only way to decompose 𝑬𝑬 = �𝑻𝑻𝑹𝑹?
No!





Uniqueness of SfM solution?

We used the following decomposition:
1 0 0
0 1 0
0 0 0

= −
0 1 0
1 0 0
0 0 0

×
0 −1 0
1 0 0
0 0 1

          skew-symmetric �𝑇𝑇−𝑧𝑧  x rotation 𝑅𝑅𝑧𝑧,+𝜋𝜋/2

But what if we had instead used the equally valid:
1 0 0
0 1 0
0 0 0

=
0 −1 0
1 0 0
0 0 0

× −
0 1 0
1 0 0
0 0 1

          skew-symmetric �𝑇𝑇+𝑧𝑧  x rotation 𝑅𝑅𝑧𝑧,−𝜋𝜋/2

We would have ended up with a different estimate of �𝑇𝑇,𝑅𝑅: 
• �𝑇𝑇 = 𝜎𝜎 ( �𝑈𝑈𝑇𝑇+𝑧𝑧)

• 𝑅𝑅 = 𝑈𝑈𝑅𝑅𝑧𝑧,−𝜋𝜋/2𝑉𝑉𝑇𝑇



Uniqueness of SfM solution?

• So, for a given 𝐸𝐸 matrix, there are two possible decompositions �𝑇𝑇,𝑅𝑅

• But this is not all. If 𝐸𝐸 is a valid solution to 𝜇𝜇𝑇𝑇𝐸𝐸𝜆𝜆 = 0, then so is −𝐸𝐸!
 And −𝐸𝐸 induces its own two decompositions into �𝑇𝑇,𝑅𝑅:
𝐸𝐸 = 𝜎𝜎 ( �𝑈𝑈𝑇𝑇−𝑧𝑧) 𝑈𝑈𝑅𝑅𝑧𝑧,+𝜋𝜋/2𝑉𝑉𝑇𝑇 ⇒ −𝐸𝐸 = 𝜎𝜎( �𝑈𝑈𝑇𝑇+𝑧𝑧) 𝑈𝑈𝑅𝑅𝑧𝑧,+𝜋𝜋/2𝑉𝑉𝑇𝑇 , and
𝐸𝐸 = 𝜎𝜎 ( �𝑈𝑈𝑇𝑇+𝑧𝑧) 𝑈𝑈𝑅𝑅𝑧𝑧,−𝜋𝜋/2𝑉𝑉𝑇𝑇  ⇒ −𝐸𝐸 = 𝜎𝜎( �𝑈𝑈𝑇𝑇−𝑧𝑧) 𝑈𝑈𝑅𝑅𝑧𝑧,−𝜋𝜋/2𝑉𝑉𝑇𝑇



The Four Possible 𝑅𝑅,𝑇𝑇 decompositions of ±𝐸𝐸

±𝐸𝐸 =  �𝑇𝑇 𝑅𝑅
                𝜎𝜎( �𝑈𝑈𝑇𝑇−𝑧𝑧) 𝑈𝑈𝑅𝑅𝑧𝑧,+𝜋𝜋/2𝑉𝑉𝑇𝑇

                    𝜎𝜎( �𝑈𝑈𝑇𝑇+𝑧𝑧) 𝑈𝑈𝑅𝑅𝑧𝑧,+𝜋𝜋/2𝑉𝑉𝑇𝑇

                𝜎𝜎( �𝑈𝑈𝑇𝑇+𝑧𝑧) 𝑈𝑈𝑅𝑅𝑧𝑧,−𝜋𝜋/2𝑉𝑉𝑇𝑇

                𝜎𝜎( �𝑈𝑈𝑇𝑇−𝑧𝑧) 𝑈𝑈𝑅𝑅𝑧𝑧,−𝜋𝜋/2𝑉𝑉𝑇𝑇

Last left singular vector of 𝐸𝐸, with 
either + or - sign

( �𝑇𝑇,𝑅𝑅)

Can disambiguate by enforcing positive 
depths for all points (most points if 
noisy) in both cameras.

But how to get depths?

Can get rid of the scale 𝜎𝜎, 
no harm done.

Note: Both R 
matrices are not 

guaranteed to have 
determinant +1. 

Could be -1. But at 
least one with +1. 



Computing depths 𝜆𝜆𝑖𝑖 , 𝜇𝜇𝑖𝑖 through “triangulation”



Triangulation is independently useful! E.g. MoCap

Optitrack





The full two-view 8-point algorithm
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The full two-view 8-point algorithm

𝑅𝑅 = 𝑈𝑈𝑅𝑅𝑍𝑍,−𝜋𝜋/2𝑉𝑉𝑇𝑇
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