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Administrivia
• Some changes for my OH in these two weeks: 
 Location: Levine 570
 This week: 4-5pm, Friday (March 21)
 Next week: 3:30-4:30pm, Tuesday (March 25)

• Deadline of HW 3 is March 28 (next Friday).
• Midterm Exams (Next Wednesday)
 The format is slightly different from that of the review questions, but the coverage of 

the key knowledge points will be the same. 
 5 long questions (50pts in total = 10pts x 5)
 Knowledge Points: Everything covered up to last class. 

• Combined slides for your mid-term exam preparation have been uploaded to Canvas. 
• Review for Knowledge Points: Next Class (Next Monday).
• We will have additional OHs from today until next Tuesday. TAs will announce the 

specific times asap. 



2-View SfM: How we recovered 𝑅𝑅,𝑇𝑇, 𝜆𝜆𝑖𝑖 , 𝜇𝜇𝑖𝑖 𝑖𝑖=1
𝑛𝑛

• Invent an object 𝐸𝐸 = �𝑇𝑇𝑅𝑅
• Express epipolar constraint for every point correspondence 𝑞𝑞𝑖𝑖𝑇𝑇𝐸𝐸𝑝𝑝𝑖𝑖 = 0
• Solve equations to get initial estimate 𝐸𝐸0
• 𝑆𝑆𝑆𝑆𝑆𝑆 𝐸𝐸0 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇, Then set 𝐸𝐸 = 𝑈𝑈diag 1, 1, 0 𝑉𝑉𝑇𝑇

• Then, long proof to show you can set ±(last left singular vector of 𝐸𝐸) to be 
𝑇𝑇, and there are two possible rotation matrices you can pair each 
translation vector with.
 Solve depth by solving 𝜇𝜇𝑖𝑖𝑅𝑅𝒑𝒑𝑖𝑖 + 𝑇𝑇 = 𝜆𝜆𝑖𝑖𝒒𝒒𝑖𝑖 for each of these 4 solutions.
 Settle on the solution that has all (or most) depths positive. 

(Sidenote/Q: Are 𝜆𝜆𝑖𝑖 and 𝜇𝜇𝑖𝑖 really “depths?” )

What is the meaning of these ambiguities in the solution to SfM?



Types of Ambiguity in 2-View SfM Solutions

MSKS Ch 5

𝜎𝜎( �𝑈𝑈𝑇𝑇−𝑧𝑧) 𝑈𝑈𝑅𝑅𝑧𝑧,+𝜋𝜋/2𝑉𝑉𝑇𝑇
                    
𝜎𝜎( �𝑈𝑈𝑇𝑇+𝑧𝑧) 𝑈𝑈𝑅𝑅𝑧𝑧,+𝜋𝜋/2𝑉𝑉𝑇𝑇
                
𝜎𝜎( �𝑈𝑈𝑇𝑇+𝑧𝑧) 𝑈𝑈𝑅𝑅𝑧𝑧,−𝜋𝜋/2𝑉𝑉𝑇𝑇
                
𝜎𝜎( �𝑈𝑈𝑇𝑇−𝑧𝑧) 𝑈𝑈𝑅𝑅𝑧𝑧,−𝜋𝜋/2𝑉𝑉𝑇𝑇

Just extending scale ambiguity 
to negative scales. Some 
people don’t even count this 
as a “true” ambiguity of SfM.

camera 



ZH Ch 9

Mirror ambiguity

Tw
isted pair am

biguity



What is “solving” when solutions have “ambiguity”?
• We said we could solve for camera pose given 3 2D->3D correspondences (P3P)
 But there was ambiguity: 4 solutions!

• We said we could solve for essential matrix E given 5 2D->2D point correspondences. 
 But there was ambiguity: 2 solutions for E, and 2 possible ways to decompose each E 

into T, R. 4 solutions again! (ignore scale ambiguity because that is a basic property 
of E)

• So what do we really mean when we say, “we can solve for X given Y”?
 We mean that the number of solutions is finite. 
 In other words, “solving” here refers to the process of searching over the infinite 

space of all possible poses, essential matrices etc. to only a finite number. 
 We might sometimes need something more (e.g. an extra correspondence in P3P) to 

pin down the “correct” solution out of this finite number.
 This usually happens because we ignore some “obvious” constraints during problem 

setup, e.g. that depths should all be positive. This sets up easier “relaxed” problems, 
and it is usually easy enough to re-impose those constraints after solving the relaxed 
problem. 





What is the relationship between two views of the same plane? (facade)

Answer: As we saw early in the course, homographies!



In 2-view SfM, what if there is no translation?

• Epipolar constraint becomes 0=0! So, cannot do all the SfM stuff above!
• Go back to 𝜆𝜆𝜆𝜆 = 𝜇𝜇𝑅𝑅𝑅𝑅 + 𝑇𝑇 = 0 = 𝜇𝜇𝜇𝜇𝜇𝜇
 In other words: 𝑞𝑞~𝑅𝑅𝑅𝑅
Going back to pixel coordinates from calibrated:
𝐾𝐾−1𝑞𝑞𝑝𝑝𝑝𝑝~𝑅𝑅𝐾𝐾−1𝑝𝑝𝑝𝑝𝑝𝑝
 𝑞𝑞𝑝𝑝𝑝𝑝~𝐾𝐾𝐾𝐾𝐾𝐾−1𝑝𝑝𝑝𝑝𝑝𝑝

• 𝐾𝐾𝐾𝐾𝐾𝐾−1 is invertible (determinant =/= 0)
• So this is a homography 𝐻𝐻 = 𝐾𝐾𝐾𝐾𝐾𝐾−1!

Two views from the same camera center and different camera orientations 
are related by a homography even if the world is not planar!



No-Translation Image = Image of a Plane!

Two views from the same camera center and different camera orientations 
are related by a homography even if the world is not planar!

Image plane 1

Image plane 2

The image formed of the world on plane 2, may also be thought of as: 
the image of image plane 1. i.e. image of a plane i.e. homography!

camera center



Recap: Checking for no translation during SfM

• If you set up the 𝑛𝑛 point correspondences as 𝐴𝐴2𝑛𝑛×9𝒉𝒉9×1 = 0 (as we have 
done before when solving for homography)

• Then, if rank(𝐴𝐴) is (approximately) 8, then you can (approximately) 
compute 𝐻𝐻. This means that, actually, there was no (or insignificant) 
translation, so you can’t do SfM!

This check is a common component in SfM systems.

Q: Is this the only case when 𝐻𝐻 is computable?
A: No, also when imaging a plane, of course.

Note: While you can’t do SfM with no translation of the camera, you can actually 
do other cool things, like building 360° image “panoramas”!

Coming up next!





Image Stitching / Mosaicing From Rotated Views

Based on slides by Richard Szeliski



2 Views From The Same Camera Center

O

1

2

• Camera field of view (FOV) is finite, so view 1 can only fill in pixels into a small region of 
image plane 1

Field of viewImage 1

Image 2

Optical Center

• View 2 could see things outside the FOV of view 1. Could we add those pixels into view 1 to 
extend the image?

Your human vision system does something like this when your eyeball moves. 

Yes. Project both images onto the same image plane e.g. image 1!



Image Stitching Results Example

https://pyimagesearch.com/2018/12/17/image-stitching-with-opencv-and-python/

https://pyimagesearch.com/2018/12/17/image-stitching-with-opencv-and-python/


What is the transformation between these views?
For every pixel in image 2, we need to find the right pixel location to 
place it inside image 1.

Image 1

Image 2
Optical Center

camera 1

camera 2

image coords
 (in image 2)

image coords
 (in image 1)

3D ray direction in world 
coordinates

3D ray direction in camera 1 
coordinates

3D ray direction
 (in cam 2 coordinates)

Project through camera 1!

3x3 homography

Homography even though not restricting to imaging a plane!



In practice, the homography is estimated
• We now know that the two images are related by a homography.

• In practice, we don’t know 𝑅𝑅 or even necessarily 𝐾𝐾1 or 𝐾𝐾2

• But fortunately, we know how to solve for homography 𝐻𝐻 given point 
correspondences.
 So we need the two images to overlap so that you can find 

correspondences and estimate the homography.



Creating a panorama from >2 images

• Basic Procedure
 Take a sequence of images from the same position
 Rotate the camera about its optical center

 Compute transformation between second image and first
 Transform the second image to overlap with the first
 Blend the two together to create a mosaic
 If there are more images, repeat



Projecting images onto a common plane

mosaic PP



Image alignment
Often cropped like this to produce an image 
without empty regions





Microsoft Lobby: http://www.acm.org/pubs/citations/proceedings/graph/258734/p251-szeliski

Can we use homography to create a 360° panorama?

http://www.acm.org/pubs/citations/proceedings/graph/258734/p251-szeliski/


Can we use homography to create a 360° panorama?

Projecting backwards-facing views onto the same image plane?
Breaks down.

mosaic PP



Panoramas
Instead of projecting onto a plane, you project onto a sphere! 

i.e. for every 3D point, draw the line connecting it to the camera center, and find its 
intersection with a projection sphere --- this is the point’s image!

mosaic Projection Sphere



 Map 3D point (X,Y,Z) onto sphere

Spherical projection (overview)

X
Y
Z

unit sphere

unwrapped sphere

• Convert to spherical coordinates

Spherical image

• Convert to spherical image coordinates

– s defines size of the final image
» often convenient to set s = camera focal length



f = 200 (pixels)

Spherical reprojection

• Map image to spherical coordinates
 need to know the focal length

input f = 800f = 400



+

+

+

+

Microsoft Lobby: http://www.acm.org/pubs/citations/proceedings/graph/258734/p251-szeliski

Spherical Panorama Example

Note the 
distortions

http://www.acm.org/pubs/citations/proceedings/graph/258734/p251-szeliski/
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