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Recap: What is the relationship between two views of the same plane? (facade)

Answer: As we saw early in the course, homographies!



Recap: Two Calibrated Views of the Same 3D Scene

𝑅𝑅 𝜆𝜆𝜆𝜆 + 𝑇𝑇 = 𝜇𝜇𝜇𝜇



Recap: In 2-view SfM, what if there is no translation?

• Epipolar constraint becomes 0=0! So, cannot do all the SfM stuff above!
• Go back to 𝜆𝜆𝜇𝜇 = 𝜇𝜇𝑅𝑅𝜆𝜆 + 𝑇𝑇 = 0 = 𝜇𝜇𝑅𝑅𝜆𝜆
 In other words: 𝜇𝜇~𝑅𝑅𝜆𝜆
Going back to pixel coordinates from calibrated:
𝐾𝐾−1𝜇𝜇𝑝𝑝𝑝𝑝~𝑅𝑅𝐾𝐾−1𝜆𝜆𝑝𝑝𝑝𝑝
 𝜇𝜇𝑝𝑝𝑝𝑝~𝐾𝐾𝑅𝑅𝐾𝐾−1𝜆𝜆𝑝𝑝𝑝𝑝

• 𝐾𝐾𝑅𝑅𝐾𝐾−1 is invertible (determinant =/= 0)
• So this is a homography 𝐻𝐻 = 𝐾𝐾𝑅𝑅𝐾𝐾−1!

Two views from the same camera center and different camera orientations 
are related by a homography even if the world is not planar!



Recap: No-Translation Image = Image of a Plane!

Two views from the same camera center and different camera orientations 
are related by a homography even if the world is not planar!

Image plane 1

Image plane 2

The image formed of the world on plane 2, may also be thought of as: 
the image of image plane 1. i.e. image of a plane i.e. homography!

camera center



Recap: Checking for no translation during SfM

• If you set up the 𝑛𝑛 point correspondences as 𝐴𝐴2𝑛𝑛×9𝒉𝒉9×1 = 0 (as we have 
done before when solving for homography)

• Then, if rank(𝐴𝐴) is (approximately) 8, then you can (approximately) 
compute 𝐻𝐻. This means that, actually, there was no (or insignificant) 
translation, so you can’t do SfM!

This check is a common component in SfM systems.

Q: Is this the only case when 𝐻𝐻 is computable?
A: No, also when imaging a plane, of course.

Note: While you can’t do SfM with no translation of the camera, you can actually 
do other cool things, like building 360° image “panoramas”!

Coming up next!





Image Stitching / Mosaicing From Rotated Views

Based on slides by Richard Szeliski



2 Views From The Same Camera Center

O

1

2

• Camera field of view (FOV) is finite, so view 1 can only fill in pixels into a small region of 
image plane 1

Field of viewImage 1

Image 2

Optical Center

• View 2 could see things outside the FOV of view 1. Could we add those pixels into view 1 to 
extend the image?

Your human vision system does something like this when your eyeball moves. 

Yes. Project both images onto the same image plane e.g. image 1!



Image Stitching Results Example

https://pyimagesearch.com/2018/12/17/image-stitching-with-opencv-and-python/

https://pyimagesearch.com/2018/12/17/image-stitching-with-opencv-and-python/


What is the transformation between these views?
For every pixel in image 2, we need to find the right pixel location to 
place it inside image 1.

Image 1

Image 2
Optical Center

camera 1

camera 2

image coords
 (in image 2)

image coords
 (in image 1)

3D ray direction in world 
coordinates

3D ray direction in camera 1 
coordinates

3D ray direction
 (in cam 2 coordinates)

Project through camera 1!

3x3 homography

Homography even though not restricting to imaging a plane!



In practice, the homography is estimated
• We now know that the two images are related by a homography.

• In practice, we don’t know 𝑅𝑅 or even necessarily 𝐾𝐾1 or 𝐾𝐾2

• But fortunately, we know how to solve for homography 𝐻𝐻 given point 
correspondences.
 So we need the two images to overlap so that you can find 

correspondences and estimate the homography.



Creating a panorama from >2 images

• Basic Procedure
 Take a sequence of images from the same position
 Rotate the camera about its optical center

 Compute transformation between second image and first
 Transform the second image to overlap with the first
 Blend the two together to create a mosaic
 If there are more images, repeat



Projecting images onto a common plane

mosaic PP



Image alignment
Often cropped like this to produce an image 
without empty regions





Microsoft Lobby: http://www.acm.org/pubs/citations/proceedings/graph/258734/p251-szeliski

Can we use homography to create a 360° panorama?

http://www.acm.org/pubs/citations/proceedings/graph/258734/p251-szeliski/


Can we use homography to create a 360° panorama?

Projecting backwards-facing views onto the same image plane?
Breaks down.

mosaic PP



Panoramas
Instead of projecting onto a plane, you project onto a sphere! 

i.e. for every 3D point, draw the line connecting it to the camera center, and find its 
intersection with a projection sphere --- this is the point’s image!

mosaic Projection Sphere



 Map 3D point (X,Y,Z) onto sphere

Spherical projection (overview)

X
Y
Z

unit sphere

unwrapped sphere

• Convert to spherical coordinates

Spherical image

• Convert to spherical image coordinates

– s defines size of the final image



+

+

+

+

Microsoft Lobby: http://www.acm.org/pubs/citations/proceedings/graph/258734/p251-szeliski

Spherical Panorama Example

Note the 
distortions

http://www.acm.org/pubs/citations/proceedings/graph/258734/p251-szeliski/




Hough and RANSAC
Simple subroutines for feature identification, grouping, and correspondence 
filtering





Correspondences are not clean!
Or we might have to group them !
(two planes=>two homographies)



A Case Study: Fitting A Line To Data



Finding the line by optimization

argmin
𝜃𝜃∈ 0,2𝜋𝜋 ,𝑑𝑑≥0

 ∑𝑖𝑖=1𝑁𝑁 𝑥𝑥𝑖𝑖 cos𝜃𝜃 + 𝑦𝑦𝑖𝑖 sin𝜃𝜃 − 𝑑𝑑 2

To solve for the line, we could minimize the mean squared error:

This is solvable. Exactly how is not particularly important. (next 2 slides)



Solution sketch (not for testing)

argmin
𝜃𝜃∈ 0,2𝜋𝜋 ,𝑑𝑑≥0

 ∑𝑖𝑖=1𝑁𝑁 𝑥𝑥𝑖𝑖 cos𝜃𝜃 + 𝑦𝑦𝑖𝑖 sin𝜃𝜃 − 𝑑𝑑 2

𝑑𝑑 =
1
𝑁𝑁
�
𝑖𝑖

(𝑥𝑥𝑖𝑖 cos 𝜃𝜃 + 𝑦𝑦𝑖𝑖 sin𝜃𝜃)



Solution sketch (not for testing)



�
𝑖𝑖

This corresponds to maximizing:

If you have machine 
learning or statistics 
background, what is 

this type of line 
fitting called?

𝑃𝑃(𝜃𝜃,𝑑𝑑|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖), kind of like a 
“vote” by (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) for (𝜃𝜃,𝑑𝑑)

Maximum likelihood!

Key idea: find the parameters that the most data points “vote” for.







Hough Voting Procedure

For every possible line (𝑑𝑑,𝜃𝜃) , count the number of points that “support” it. 

�
points 𝑝𝑝,𝑦𝑦

1(𝑥𝑥 cos𝜃𝜃 − 𝑦𝑦 sin𝜃𝜃 = 𝑑𝑑) 

 
(can sometimes relax the equality sign to approximate equality, or makes vote “soft” etc.)

In the end, the (𝑑𝑑,𝜃𝜃) with the maximum “votes” wins!
(in case of multiple lines, not just one winner, but all local maxima above 

some threshold win)



Vote Counting to Find Lines!



Algorithm v1, and a practical issue

• For every possible line (𝑑𝑑,𝜃𝜃) , count the number of points that “support” it. 

�
points 𝑝𝑝,𝑦𝑦

1( 𝑥𝑥 cos𝜃𝜃 + 𝑦𝑦 sin𝜃𝜃 − 𝑑𝑑 < 𝛿𝛿threshold) 

• In the end, local maxima with many votes are declared lines.

Seems impractical



Solution: discretizing the parameter space.
• For each of some enumerated discrete parameter combinations 

𝑑𝑑𝑗𝑗 ,𝜃𝜃𝑗𝑗 𝑗𝑗=1
𝐽𝐽

 , count supporting points among the data. 

𝑉𝑉 𝑑𝑑𝑗𝑗 ,𝜃𝜃𝑗𝑗 = �
points 𝑝𝑝,𝑦𝑦

1( 𝑥𝑥 cos𝜃𝜃𝑗𝑗 + 𝑦𝑦 sin𝜃𝜃𝑗𝑗 − 𝑑𝑑𝑗𝑗 < 𝛿𝛿threshold) 

 For example,  Θ = 0°, 15°, … , 180° × 𝑆𝑆 = 0, 1, 2, 3, 4,5 ⇒ 13 × 6 =
78 parameter combinations 

• In the end, local maxima of V[𝑑𝑑,𝜃𝜃] with many votes are declared lines.

Notes:
Needs careful choices about how to discretize parameters into bins. 
Each bin should correspond to an error you are okay with making, so can’t be 
too coarse.
But too fine-grained => computationally intensive!  



Line Fitting Demo With >1 Lines

https://www.aber.ac.uk/~dcswww/Dept/Teaching/CourseNotes/current/CS34110/hough.html

https://www.aber.ac.uk/%7Edcswww/Dept/Teaching/CourseNotes/current/CS34110/hough.html


Hough Circle Detection (3 parameters)



Hough Ellipse Detection (5 parameters)



Application: Automatically Grouping Vanishing Points

Szeliski Ch 4

(Roughly, each pair of detected line segments votes for their point of intersection. Larger 
weights for longer segments, and non-collinear segments)



Hough transforms are great and simple-to-implement approach for 
grouping k samples into n “groups” (e.g. lines, circles, VPs etc.) + outliers 
that don’t belong to any group. 

• Note: Needs a bounded parameter space to allow a finite discrete set 
of hypotheses, and careful discretization.

• Main drawback: Poor scaling. Becomes intractable when # 
parameters(unknowns) for the target groupings is more than 3 or at 
most 4 in practice.
• So, e.g. to fit homographies (8 parameters), completely intractable. 

Disadvantages of Hough Transforms

Alternative solution that scales much better: RANSAC!
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