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Recap: Image stitching

For every pixel in image 2, we need to find the right pixel location to
place it inside image 1.
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Project through camera 1!
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Homography even though not restricting to imaging a plane!



Recap: Correspondences are not clean!
Or we might have to group them |

(two planes=>two homographies)




Recap: A Case Study: Fitting A Line To Data

Given data (z;,y;) belonging to a line
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Recap: Finding the line by optimization

To solve for the line, we could minimize the mean squared error:

argmin  Y..,(x; cos@ + y; sin8 — d)?
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Recap: Hough Voting
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Recap: Disadvantages of Hough Transforms

Hough transforms are great and simple-to-implement approach for
grouping k samples into n “groups” (e.g. lines, circles, VPs etc.) + outliers
that don’t belong to any group.

* Note: Needs a bounded parameter space to allow a finite discrete set
of hypotheses, and careful discretization.

* Main drawback: Poor scaling. Becomes intractable when #
parameters(unknowns) for the target groupings is more than 3 or at
most 4 in practice.

e So, e.g. to fit homographies (8 parameters), completely intractable.

Alternative solution that scales much better: RANSAC!



RANSAC

Random Sample Consensus for detecting “inliers and outliers”



Goal: Detecting inliers and outliers

* Given that we are detecting one group (e.g. one line, or one
circle, or one homography) in some noisy data that includes
outliers, how to do this?

" Easier than the multiple group-finding problem that Hough
tries to tackle.

" But hopefully, our solution will be more efficient in high-
dimensional settings, where “groups” will have many
parameters.




Back to basics: a single line

Given that we are fitting a single line, say, can we figure out inliers and outliers?



First, One Possible Hough Voting Approach
* Set up a vote accumulator with D entries, one corresponding to each
discrete line hypothesis under consideration.

* For each pair out of C2 pairs of points:
5 Find the corresponding line [ using a minimal set of points with M points

= Vote 1 for the closest discrete line hypothesis [ ;;.. = & from the
hypothesis set, O for all else. Add all votes to the accumulator.

* Going over all entries in the accumulator, pick the one with the highest

votes. .:
@
[ _ o ’




Minimal sample sets in geometry

* Plane: 3 points

e Circle: 3 points

* Ellipsoid: 5 points

* Line: 2 points

* Homography: 4 2D->3D point correspondences on a 3D plane
* P3P: 3 2D->3D point correspondences in 3D



First, One Possible Hough Voting Approach

* Set up a vote accumulator with D entries, one corresponding to each
discrete line hypothesis under consideration.

* For each pair out of C2 pairs of points:
" Find the corresponding line [ using a minimal set of points with M points

= Vote 1 for the closest discrete line hypothesis [ ;.. = & from the
hypothesis set, O for all else. Add all votes to the accumulator.

* Going over all entries in the accumulator, pick the one with the highest
votes.




Not-Quite RANSAC: Sample Consensus (Non-Random)

e Set maximum inlier count Max =0 }/ This is still a problem though.

* [For each pair out of C2 pairs of points:

" Find the corresponding line [ using a minimal set of points with M points
* Check how many other points approximately lie on this line (“inliers”).

" If Ningiers > Max, set Max = N0 and set best candidate to [

A A A A
No need to discretize the hypothesis space into a finite set.

No need to store and track the full hypothesis set.

So, does not blow up in complexity as the hypothesis space grows (more
unknown parameters, finer discretization ...)

inliers Ninliers — 14



RANdom SAmple Consensus or RANSAC

and analysis conditions. Implementation details and
computational examples are also presented.

Key Words and Phrases: model fitting, scene
analysis, camera calibration, image matching, location
determination, automated cartography.

Graphics and J. D. Foley CR Categories: 3.60, 3.61, 3.71, 5.0, 8.1, 8.2

Image Processing Editor

Random Sample
Consensus: A |
Paradigm for Model = conensus tuansuc), for fting a model o experimen
Fitting with mated carogeaphy. The applicaion discuiscd, the loca.

tion determination problem (LDP), is treated at a level

Applicati(}ns tO Image beyond that of a mere example of the use of the RANSAC

paradigm; new basic findings concerning the conditions

AHHIYSIS alld under which the LDP can be solved are presented and

a comprehensive approach to the solution of this problem

Alltomated that we anticipate will have near-term practical appli-

cations is described.
C&I’togl'aphy To a large extent, scene analysis (and, in fact, science

in general) is concerned with the interpretation of sensed

I. Introduction

Random sample consensus: a paradigm for model fitting with applications to
image analysis and automated cartography

MA Fischler, RC Bolles - Communications of the ACM, 1981 - dl.acm.org

... We introduce a new paradigm, Random Sample Consensus (RANSAC), for fitting a model

to experimental data; and illustrate its use in scene analysis and automated cartography. The ...

Y% Save DY Cite Cited by 29840 Related articles All 12 versions Import into BibTeX

Martin A. Fischler and Robert C. Bolles
SRI International



RANSAC in the line fitting setting

e Set maximum inlier count Max = 0

* For some k randomly chosen pairs out of C5 pairs of points:
" Find the corresponding line [ using a minimal set of points with M points
=" Check how many other points approximately lie on this line (“inliers”).
" If Ningiers > Max, set S = ny,y0.-¢ and set best candidate to [

How to choose the number of trials k?



PrOba b|I|St|C ana|y5|s Of RANSAC If this happens, we will find the correct

answer!

e Suppose the probability of any given sample being a true inlier is €
* Suppose the minimal set has M points (e.g. 2 for line fitting)
* Q: What is the probability that the minimal sample set is all inliers?

A: eM
* Q: In k iterations, what is the probability of never finding an all-inlier set?
A: (1 — eM)k \

If this happens, RANSAC would fail!

In other words, for given M, ¢, if we try k times, the probability that we hit

the correct answer is:
1 — (1 _ EM)k \

Probability of success for RANSAC!




How many times do we have to try? 1- (-
. log(1—p)
log(1 — eM)
Number of iterations needed to find the correct solution with probability 0.9 for the case of
M=2 (line), 3 (circle), 4 (rectangle), 5 (ellipse)

I I
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Fraction of inliers



iteration W/17

Demo

http://www.visual-experiments.com/. o/ransac.js/



http://www.visual-experiments.com/demo/ransac.js/

isy correspondences!

Cleaning up no

Application




Panoramic Example

. ' Efros
virtual wide-angle camera



Mosaic Example

Slides from Kosta Derp



Step 1: Feature Extraction
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Independently extract features in each image




Step 2: Feature Matching

Compute putative matches between iImages




Step 3: Minimal Point Set for Estimation
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Step 4: Check Consistency
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h transformation

Search for matches consistent wit




Repeat Steps 3-4 to select best parameters



Check Warping Results
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RANSAC vs. Hough

e RANSAC is more efficient when fraction of outliers is low
* Hough is intractable for large number of unknowns

RANSAC is a workhorse, widely used in a large number of practical settings
today, beyond just computer vision.







What methods for what types of correspondences?

3D-> 3D correspondences - Procrustes tosolve R, T

3D-> 2D correspondences . Pose from Point
correspondences (PnP / P3P)

2D->2D correspondences . Structure from Motion (SfM)

and /or image stitching

Correspondences are really key! But where do they actually come from?

One solution: “optical flow”



Where Do Point Correspondences Come From?

In all the algorithms we have covered thus far we have simply assumed correspondences
were given — but how do we compute them?

One solution: “optical flow”




Point Correspondences
Through Optical Flow



Optical Flow: Definition

The pattern of apparent motion of objects, surfaces, and edges in a visual
scene caused by the relative motion between an observer and a scene.

* |deally, the optical flow is the projection of the 3-D velocity vectors on the
image. i.e., the “motion field”.

" But this won’t always be possible, as we will see.



Target Optical Flow Output

“Tracks” attached to 3D regions in the world that show how they moved
throughout a video.




Optical Flow is Useful Beyond Geometric Vision

* Independently interesting! For example, for video compression.

" Rather than encoding every patch of the second frame from scratch, you
could make your job much easier by saying that patch no. k of frame 2 is
the same as patch no. j of frame 1, for example.

" Large gains (often 2-3 orders of magnitude!) in storage, transmission
etc.

* When flow is computed over video frames from a moving camera in a
(mostly) static world, it yields correspondences that can be used e.g. in
SfM.

* We want efficient methods particularly for real-time use cases, like on a
robot.



Motion is a strong segmentation cue

“Segmentation”: grouping pixels into
objects, object parts etc.

Animals are extremely reliant on detecting
motion in natural scenes for segmentation
and other perception objectives. But this
is not an easy problem.

By constructing various non-natural
scenes, it is possible to break our motion
detection!







lllusory motions!

Often happen because the

eye is constantly roving the
scene, and we are having to
constantly compensate for
the eye’s own motion when
figuring out what else is
moving in the scene.







Image Motion

To try and solve this problem let’s consider two consecutive frames in a video

Can you tell how the camera is moving?

Not so easy, but let’s flip between the two images to make it easier




g IMage I;

Flipping between these slides, we
see we could move each pixel in
the first to match the second. The
motion of each pixel in this is
called optical flow
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Flipping between these slides, we
see we could move each pixel in
the first to match the second. The
motion of each pixel in this is
called optical flow
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Target Output of Optical Flow

For a pixel in the first image, optical flow should tell us which pixel in the second
image it matches with, i.e., “corresponds” to.

LIi(z,y) > i1 (z,y)

1SS Note that we are not showing
: correspondences for every pixel,
back to that in a few slides.

Problem: Individual pixels can be
very ambiguous to match across
Images.

(A more precise version of this soon)



Optical Flow Over Patches

Solution: Let’s match small local regions (“patches”) between the two images.
(Assumption: All pixels within a patch move in the same way)




Optical Flow Over Patches

Let’s focus first on image patches that we can locally distinguish from other patches




Optical Flow as Local Search

If the video frames are close enough we can look for these salient patches
in nearby images!

]t—l—l ([,U T 5339 Y =+ 53/)

Which nearby patch in the
next image is the closest?

It(xay)

| =
N

Side note: Some people use the reverse
convention in terms of which image to
search on, but the math is the same







Local Search Objective Function

(330’ yO) Pixel where we are computing the optical flow

_/\/' Neighborhood patch around a pixel

(5337 5y) Offset we are optimizing for — the optical flow

The function we are trying to optimize is (assuming a continuous image):

(6x,0y) = argminj j I:(x,y) = I;11(x + 6x,y + 6y) dxdy
6x,8y (x,¥)EN (x0,Y0)

N J
Y

argmin z (I (x,y) — It 11 (x + 6x,y + 6y))?
0%y () EN(xoy0)

If we discretize:

Exhaustive search over all possible sub-pixel motions 6x, 6y? Intractable!



Local Search Simplification

To speed things up, assume that the change is small

Ie(x,y) — I141(x + 6x,y + 6y)

ox
~ [t(a:‘,y) — (It+1 (azjy) + VItH(a:‘,y)T ((53/)) Taylor expansion

= ALi(z,y) — VI (z,y)" ((65:;) Note the 2 different triangles

We want to select dx, 6y to minimize the sum of the square of this quantity
over a neighborhood.

First, let’s understand its two terms, the difference image, and the gradient.

argmin z (I, (x,y) — I, 11(x + 6x,y + 6y))*
%0 (2 y)EN(xo0)




Difference Image

Term 1




Term 2: Spatial Gradient

= ALi(z,y) —| VI (z,y)"

These gradients are
easy to compute
efficiently using
“convolutions”.
More on that later
in the course.

-Vl (2,y)




Back to Optimizing Flow

The new cost function becomes:

. 5x1\*
(6x,8y) = argmin Z (Alt(x, y) = Vi (x,y)" 5y])
0%,0y X,YEN (X0,Y0)

This is the type of linear least squares problem we regularly solve, when faced
with overdetermined systems of linear equations that look like:

0X
VI )" [ | = 1G9
Y X,YEN (x0,Y0)

Q: What if we had defined a single-pixel “patch” IV, i.e., N (xg, ¥o) = {(X0,¥0)}?

A: One equation, two unknowns. Unsolvable! This is the “aperture problem” of optical flow.

You need a neighborhood to compute flow.




. r[0x] _
Lucas-Kanade Optical Flow TGy 5| =aen)]

Stacking the
equations:

Vo l| VI
Po Po
Ermr— V.| | |[3] =
pi pi 5)}
Pixel differences
computed as
VyI AI = It — It+1
Spatial Pn Pn - }
gradients VI Y Y
computed A X
on second
mage I, x* = (ATA)"1ATD

Recall that for overdetermined Ax = b, we solve
min||Ax — b||5 using the pseudo-inverse (ATA)"1ATh
X



Lucas-Kanade (LK) Optical Flow

* If you explicitly plug A from the last slide into (AT A)"1AT b, you get:

—1

Sr*
(5:;*) B Z vIt-l—l(‘fEa y)VIt-l-l([Ea y)T Z AIt(x’ y)VIH_l(x, y)

(z,y) (z,y)

(But easier to just remember the linear system and pseudoinverse)

Invented in 1981, still very widely used!

Proceedings DARPA Image Understanding Workshop, April 1981, pp. 121-130

i ape ; ’ d and included in the
{ially the same but shorter version of this paper was presente
eﬂﬂc:u:: ';lh intl Joint Conf _on Artificial Intelligence (LICAT] 1981, August 24-28,
Vancouver, British Columbia, pp.674-679,
when you refer to the work, please refer to the LICAL paper.
An Iterative Image Registration Technique
with an Application to Stereo Vision

Bruce D. Lucas
Takeo Kanade






Why couldn’t we compute optical flow confidently for all these other points?




Assumptions We've Made: Brightness Constancy

Brightness Constancy: Color doesn’t change between different Counterexample
viewpoints (based on “Lambertian surface reflectance” assumption)

Z (It-i-l (.CU, y) —It_|_1(.1?—|—533, y+6y))2'

(:v,y) EN(SE‘{),Q{)]



Assumptions We've Made: No Occlusions

Counterexample

No occlusions: things stay in sight

Z (It-i-l (.CU, y) —It_|_1(.1?—|—533, y+6y))2'

(:v,y) EN(SE‘{),Q{)]



Assumptions We've Made  Counterexample

Minimal geometric deformations:
No large rotations or scaling

Minimal patch displacement: Taylor
expansions only work for small
translations

Could run optical flow over a pyramid.



Assumptions We've Made: Small Motions

Counterexample

Minimal patch displacement: Taylor
expansions only work for small
translations

Solution: could solve optical flow over a pyramid of varying resolutions



Assumptions We’'ve Made: Locally Uniform Motion

Constancy of pixel motion within a small neighborhood.

Requires mostly translatory motion, no large rotations / scaling etc. Also,
no major depth discontinuities.

Counterexample
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