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Recap: Image stitching
For every pixel in image 2, we need to find the right pixel location to 
place it inside image 1.

Image 1

Image 2
Optical Center

camera 1

camera 2

image coords
 (in image 2)

image coords
 (in image 1)

3D ray direction in world 
coordinates

3D ray direction in camera 1 
coordinates

3D ray direction
 (in cam 2 coordinates)

Project through camera 1!

3x3 homography

Homography even though not restricting to imaging a plane!



Recap: Correspondences are not clean!
Or we might have to group them !
(two planes=>two homographies)



Recap: A Case Study: Fitting A Line To Data



Recap: Finding the line by optimization

argmin
𝜃𝜃∈ 0,2𝜋𝜋 ,𝑑𝑑≥0

 ∑𝑖𝑖=1𝑁𝑁 𝑥𝑥𝑖𝑖 cos𝜃𝜃 + 𝑦𝑦𝑖𝑖 sin𝜃𝜃 − 𝑑𝑑 2

To solve for the line, we could minimize the mean squared error:



Recap: Hough Voting



Hough transforms are great and simple-to-implement approach for 
grouping k samples into n “groups” (e.g. lines, circles, VPs etc.) + outliers 
that don’t belong to any group. 

• Note: Needs a bounded parameter space to allow a finite discrete set 
of hypotheses, and careful discretization.

• Main drawback: Poor scaling. Becomes intractable when # 
parameters(unknowns) for the target groupings is more than 3 or at 
most 4 in practice.
• So, e.g. to fit homographies (8 parameters), completely intractable. 

Recap: Disadvantages of Hough Transforms

Alternative solution that scales much better: RANSAC!



RANSAC
Random Sample Consensus for detecting “inliers and outliers”



Goal: Detecting inliers and outliers

• Given that we are detecting one group (e.g. one line, or one 
circle, or one homography) in some noisy data that includes 
outliers, how to do this?
Easier than the multiple group-finding problem that Hough 

tries to tackle.
But hopefully, our solution will be more efficient in high-

dimensional settings, where ”groups” will have many 
parameters.



Back to basics: a single line 
Given that we are fitting a single line, say, can we figure out inliers and outliers?



First, One Possible Hough Voting Approach
• Set up a vote accumulator with D entries, one corresponding to each 

discrete line hypothesis under consideration.
• For each pair out of Cn2 pairs of points:
 Find the corresponding line 𝑙𝑙 using a minimal set of points with 𝑀𝑀 points
 Vote 1 for the closest discrete line hypothesis 𝑙𝑙𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝐸 ≈ 𝛿𝛿 from the 

hypothesis set, 0 for all else. Add all votes to the accumulator.
• Going over all entries in the accumulator, pick the one with the highest 

votes.



Minimal sample sets in geometry

• Plane: 3 points
• Circle: 3 points
• Ellipsoid: 5 points
• Line: 2 points
• Homography: 4 2D->3D point correspondences on a 3D plane
• P3P: 3 2D->3D point correspondences in 3D 



First, One Possible Hough Voting Approach
• Set up a vote accumulator with D entries, one corresponding to each 

discrete line hypothesis under consideration.
• For each pair out of Cn2 pairs of points:
 Find the corresponding line 𝑙𝑙 using a minimal set of points with 𝑀𝑀 points
 Vote 1 for the closest discrete line hypothesis 𝑙𝑙𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝐸 ≈ 𝛿𝛿 from the 

hypothesis set, 0 for all else. Add all votes to the accumulator.
• Going over all entries in the accumulator, pick the one with the highest 

votes.



Not-Quite RANSAC: Sample Consensus (Non-Random) 

• Set maximum inlier count 𝑀𝑀𝑎𝑎𝑥𝑥 = 0
• For each pair out of Cn2 pairs of points:
 Find the corresponding line 𝑙𝑙 using a minimal set of points with 𝑀𝑀 points
 Check how many other points approximately lie on this line (“inliers”).
 If 𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑑𝑑 > 𝑀𝑀ax, set 𝑀𝑀𝑎𝑎𝑥𝑥 = 𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑑𝑑 and set best candidate to 𝑙𝑙

This is still a problem though.

𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑑𝑑 = 6 𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑑𝑑 = 14 

No need to discretize the hypothesis space into a finite set.
No need to store and track the full hypothesis set.

So, does not blow up in complexity as the hypothesis space grows (more 
unknown parameters, finer discretization …)



RANdom SAmple Consensus or RANSAC

Fischler, 1981



RANSAC in the line fitting setting

• Set maximum inlier count 𝑀𝑀𝑎𝑎𝑥𝑥 = 0
• For some 𝑘𝑘 randomly chosen pairs out of C2n pairs of points:
 Find the corresponding line 𝑙𝑙 using a minimal set of points with 𝑀𝑀 points
 Check how many other points approximately lie on this line (“inliers”).
 If 𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑑𝑑 > 𝑀𝑀𝑎𝑎𝑥𝑥, set 𝑆𝑆 = 𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑑𝑑 and set best candidate to 𝑙𝑙

𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑑𝑑 = 6 𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑑𝑑 = 14 How to choose the number of trials k?



Probabilistic analysis of RANSAC

• Suppose the probability of any given sample being a true inlier is 𝜖𝜖
• Suppose the minimal set has 𝑀𝑀 points (e.g. 2 for line fitting)
• Q: What is the probability that the minimal sample set is all inliers?

A: 𝜖𝜖𝑀𝑀

• Q: In 𝑘𝑘 iterations, what is the probability of never finding an all-inlier set?
A: 1 − 𝜖𝜖𝑀𝑀 𝑘𝑘

In other words, for given 𝑀𝑀, 𝜖𝜖, if we try 𝑘𝑘 times, the probability that we hit 
the correct answer is: 

1 − 1 − 𝜖𝜖𝑀𝑀 𝑘𝑘

If this happens, we will find the correct 
answer!

If this happens, RANSAC would fail!

Probability of success for RANSAC!



Fraction of inliers

How many times do we have to try? 1 − 1 − 𝜖𝜖𝑀𝑀 𝑘𝑘
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Number of iterations needed to find the correct solution with probability 0.9 for the case of 
M=2 (line), 3 (circle), 4 (rectangle), 5 (ellipse)



Demo

http://www.visual-experiments.com/demo/ransac.js/

http://www.visual-experiments.com/demo/ransac.js/


Application: Cleaning up noisy correspondences!



















• RANSAC is more efficient when fraction of outliers is low
• Hough is intractable for large number of unknowns

RANSAC vs. Hough

RANSAC is a workhorse, widely used in a large number of practical settings 
today, beyond just computer vision.





What methods for what types of correspondences?

• 3D-> 3D correspondences
• 3D-> 2D correspondences

• 2D->2D correspondences

• Procrustes to solve R, T
• Pose from Point 

correspondences (PnP / P3P)
• Structure from Motion (SfM) 

and /or image stitching

Correspondences are really key! But where do they actually come from?

One solution: “optical flow”



Where Do Point Correspondences Come From?
In all the algorithms we have covered thus far we have simply assumed correspondences 
were given – but how do we compute them?

One solution: “optical flow”



Point Correspondences 
Through Optical Flow



Optical Flow: Definition

The pattern of apparent motion of objects, surfaces, and edges in a visual 
scene caused by the relative motion between an observer and a scene.

• Ideally, the optical flow is the projection of the 3-D velocity vectors on the 
image. i.e., the “motion field”. 
 But this won’t always be possible, as we will see.



Target Optical Flow Output

“Tracks” attached to 3D regions in the world that show how they moved 
throughout a video. 



Optical Flow is Useful Beyond Geometric Vision

• Independently interesting! For example, for video compression. 
 Rather than encoding every patch of the second frame from scratch, you 

could make your job much easier by saying that patch no. k of frame 2 is 
the same as patch no. j of frame 1, for example. 
 Large gains (often 2-3 orders of magnitude!) in storage, transmission 

etc.
• When flow is computed over video frames from a moving camera in a 

(mostly) static world, it yields correspondences that can be used e.g. in 
SfM. 

• We want efficient methods particularly for real-time use cases, like on a 
robot.



Motion is a strong segmentation cue

Animals are extremely reliant on detecting 
motion in natural scenes for segmentation 
and other perception objectives. But this 
is not an easy problem.

By constructing various non-natural 
scenes, it is possible to break our motion 
detection!

“Segmentation”: grouping pixels into 
objects, object parts etc.





Illusory motions!

Often happen because the 
eye is constantly roving the 
scene, and we are having to 
constantly compensate for 
the eye’s own motion when 
figuring out what else is 
moving in the scene.





Image Motion
To try and solve this problem let’s consider two consecutive frames in a video

Can you tell how the camera is moving?

Not so easy, but let’s flip between the two images to make it easier



Flipbook Slide                            Image 𝜆𝜆𝑡𝑡
Flipping between these slides, we 
see we could move each pixel in 
the first to match the second. The 
motion of each pixel in this is 
called optical flow



Flipbook Slide                            Image 𝜆𝜆𝑡𝑡+1
Flipping between these slides, we 
see we could move each pixel in 
the first to match the second. The 
motion of each pixel in this is 
called optical flow



Target Output of Optical Flow
For a pixel in the first image, optical flow should tell us which pixel in the second 
image it matches with, i.e., “corresponds” to.

Note that we are not showing 
correspondences for every pixel, 
back to that in a few slides. 

Problem: Individual pixels can be 
very ambiguous to match across 
images. 
(A more precise version of this soon)



Optical Flow Over Patches
Solution: Let’s match small local regions (“patches”) between the two images.

(Assumption: All pixels within a patch move in the same way)



Optical Flow Over Patches
Let’s focus first on image patches that we can locally distinguish from other patches



Optical Flow as Local Search
If the video frames are close enough we can look for these salient patches 
in nearby images!

Which nearby patch in the 
next image is the closest?

Side note: Some people use the reverse 
convention in terms of which image to 
search on, but the math is the same





The function we are trying to optimize is (assuming a continuous image):

Exhaustive search over all possible sub-pixel motions 𝛿𝛿𝑥𝑥, 𝛿𝛿𝑦𝑦? Intractable!

Neighborhood patch around a pixel

Offset we are optimizing for – the optical flow

Pixel where we are computing the optical flow

Local Search Objective Function

If we discretize:

𝛿𝛿𝑥𝑥, 𝛿𝛿𝑦𝑦 = argmin
𝛿𝛿𝑝𝑝,𝛿𝛿𝑦𝑦

� �
𝑝𝑝,𝑦𝑦 ∈𝒩𝒩(𝑝𝑝0,𝑦𝑦0)

𝜆𝜆𝑡𝑡 𝑥𝑥,𝑦𝑦 − 𝜆𝜆𝑡𝑡+1(𝑥𝑥 + 𝛿𝛿𝑥𝑥,𝑦𝑦 + 𝛿𝛿𝑦𝑦)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦

argmin
𝛿𝛿𝑝𝑝,𝛿𝛿𝑦𝑦

�
𝑝𝑝,𝑦𝑦 ∈𝒩𝒩(𝑝𝑝0,𝑦𝑦0)

𝜆𝜆𝑡𝑡 𝑥𝑥,𝑦𝑦 − 𝜆𝜆𝑡𝑡+1(𝑥𝑥 + 𝛿𝛿𝑥𝑥,𝑦𝑦 + 𝛿𝛿𝑦𝑦) 2 



To speed things up, assume that the change is small

Local Search Simplification

We want to select 𝛿𝛿𝑥𝑥, 𝛿𝛿𝑦𝑦 to minimize the sum of the square of this quantity 
over a neighborhood. 

First, let’s understand its two terms, the difference image, and the gradient.

Note the 2 different triangles 

Taylor expansion

argmin
𝛿𝛿𝑝𝑝,𝛿𝛿𝑦𝑦

�
𝑝𝑝,𝑦𝑦 ∈𝒩𝒩(𝑝𝑝0,𝑦𝑦0)

𝜆𝜆𝑡𝑡 𝑥𝑥,𝑦𝑦 − 𝜆𝜆𝑡𝑡+1(𝑥𝑥 + 𝛿𝛿𝑥𝑥,𝑦𝑦 + 𝛿𝛿𝑦𝑦) 2 

𝜆𝜆𝑡𝑡 𝑥𝑥,𝑦𝑦 − 𝜆𝜆𝑡𝑡+1(𝑥𝑥 + 𝛿𝛿𝑥𝑥,𝑦𝑦 + 𝛿𝛿𝑦𝑦)



Term 1: Difference Image



Term 2: Spatial Gradient

These gradients are 
easy to compute 
efficiently using 
“convolutions”. 
More on that later 
in the course.



Back to Optimizing Flow

The new cost function becomes:

𝛿𝛿𝑥𝑥, 𝛿𝛿𝑦𝑦 = argmin
𝛿𝛿𝑝𝑝,𝛿𝛿𝑦𝑦

�
𝑝𝑝,𝑦𝑦∈𝒩𝒩(𝑝𝑝0,𝑦𝑦0)

Δ𝜆𝜆𝑡𝑡 𝑥𝑥,𝑦𝑦 − ∇𝜆𝜆𝑡𝑡+1 𝑥𝑥,𝑦𝑦 𝑇𝑇 𝛿𝛿𝑥𝑥
𝛿𝛿𝑦𝑦

2

This is the type of linear least squares problem we regularly solve, when faced 
with overdetermined systems of linear equations that look like:

∇𝜆𝜆𝑡𝑡+1 𝑥𝑥, 𝑦𝑦 𝑇𝑇 𝛿𝛿𝑥𝑥
𝛿𝛿𝑦𝑦 = Δ𝜆𝜆𝑡𝑡 𝑥𝑥, 𝑦𝑦

𝑝𝑝,𝑦𝑦∈𝒩𝒩(𝑝𝑝0,𝑦𝑦0)
Q: What if we had defined a single-pixel “patch” 𝒩𝒩, i.e., 𝒩𝒩 𝑥𝑥0,𝑦𝑦0 = { 𝑥𝑥0,𝑦𝑦0 }? 

A: One equation, two unknowns. Unsolvable! This is the “aperture problem” of optical flow. 

You need a neighborhood to compute flow.



Lucas-Kanade Optical Flow

∇𝑝𝑝𝜆𝜆 �𝑝𝑝0
∇𝑦𝑦𝜆𝜆 �𝑝𝑝0

⋮ ⋮
∇𝑝𝑝𝜆𝜆 �𝑝𝑝𝑖𝑖

∇𝑦𝑦𝜆𝜆 �𝑝𝑝𝑖𝑖
⋮ ⋮

∇𝑝𝑝𝜆𝜆 �𝑝𝑝𝑛𝑛
∇𝑦𝑦𝜆𝜆 �𝑝𝑝𝑛𝑛

𝛿𝛿𝑥𝑥
𝛿𝛿𝑦𝑦 =

Δ𝜆𝜆 �
𝑝𝑝0
⋮

Δ𝜆𝜆 �
𝑝𝑝𝑖𝑖
⋮

Δ𝜆𝜆 �
𝑝𝑝𝑛𝑛

𝑥𝑥 derivative 𝑦𝑦 derivative

At point 𝜆𝜆𝑖𝑖 in the patch

Spatial 
gradients ∇𝜆𝜆 
computed 
on second 
image 𝜆𝜆𝑡𝑡+1 

Pixel differences 
computed as 
Δ𝜆𝜆 = 𝜆𝜆𝑡𝑡 − 𝜆𝜆𝑡𝑡+1

𝐴𝐴 𝒙𝒙 𝑏𝑏

Recall that for overdetermined 𝐴𝐴𝑥𝑥 = 𝑏𝑏, we solve 
min
x

||𝐴𝐴𝑥𝑥 − 𝑏𝑏||22 using the pseudo-inverse 𝐴𝐴𝑇𝑇𝐴𝐴 −1𝐴𝐴𝑇𝑇𝑏𝑏

𝑥𝑥∗ = 𝐴𝐴𝑇𝑇𝐴𝐴 −1𝐴𝐴𝑇𝑇𝑏𝑏

Stacking the 
equations:



Lucas-Kanade (LK) Optical Flow

• If you explicitly plug 𝐴𝐴 from the last slide into 𝐴𝐴𝑇𝑇𝐴𝐴 −1𝐴𝐴𝑇𝑇𝑏𝑏, you get:

(But easier to just remember the linear system and pseudoinverse)

Invented in 1981, still very widely used!





Why couldn’t we compute optical flow confidently  for all these other points?



Assumptions We’ve Made: Brightness Constancy

Brightness Constancy: Color doesn’t change between different 
viewpoints (based on “Lambertian surface reflectance” assumption)

Counterexample



Assumptions We’ve Made: No Occlusions

No occlusions: things stay in sight

Counterexample



Assumptions We’ve Made

Minimal geometric deformations: 
No large rotations or scaling

Counterexample

Minimal patch displacement: Taylor 
expansions only work for small 
translations

Counterexample

Could run optical flow over a pyramid.



Assumptions We’ve Made: Small Motions

Minimal patch displacement: Taylor 
expansions only work for small 
translations

Counterexample

Solution: could solve optical flow over a pyramid of varying resolutions



Assumptions We’ve Made: Locally Uniform Motion 

Counterexample

Constancy of pixel motion within a small neighborhood. 

Requires mostly translatory motion, no large rotations / scaling etc. Also, 
no major depth discontinuities.
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