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Perspective painting masterpieces on the sidewalk

This is just a perspective image drawn without the “canvas” being approximately

perpendlcular totheartlst s line of sight.




Perspective painting masterpieces on the sidewalk

Eduarda Rolero



Perspective painting masterpieces on the sidewalk

Kurt Wenner




Perspective painting masterpieces on the sidewalk
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Perspective painting masterpieces on the sidewalk

Depth from single image is all educated guesswork, based on perspective.
With some expert coaxing, the brain can be coaxed to hallucinate depth!

Joe Hill



Perspective painting masterpieces on the sidewalk

Depth from single image is all educated guesswork, based on perspective.
With some expert coaxing, the brain can be coaxed to hallucinate depth!
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Here the canvas is not
even a plane!

e B SN 3D Anamorphic Street Art and a Video

Julian Beever




But an alternative viewp
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Perspective “Anamorphic art”: art that requires a special viewpoint for viewing



https://www.youtube.com/watch?v=mxgBahscj2M




Recap: Optical Flow Correspondences

For some subset of patches in a scene, we
want to compute how they move.




Recap: Local Search Simplification

To speed things up, assume that the change is small

I (x,y) — It41(x + 6x,y + 6y)

0
~ It(::c,y) — (It—H (:z:,y) + VIHl(a:‘,y)T (6;;)) Taylor expansion

= AL(z,y) — Vi (z,y)" (gg) Note the 2 different triangles

We want to select dx, 0y to minimize the sum of the square of this quantity
over a neighborhood.

First, let’s understand its two terms, the difference image, and the gradient.

argmin Z (I, (x,y) — I, 11(x + 6x,y + 6y))?
%Y (x3)EN (xoY0)




Recap: Term 1: Difference Image

—|AL(z,y)|— VI (z,y)"




Recap: Term 2: Spatial Gradient

= AL(z,y) =|VIia(z,y)" (M)

These gradients are
easy to compute
efficiently using
“convolutions”.
More on that later
in the course.

= o) :‘ It+1($;"J)H

0 vylt—l-l (LU, y)




Recap: Optical Flow Correspondences

For some subset of patches in a scene, we I,(z,y) > I (2, y)
want to compute how they move.

Lucas-Kanade Algorithm: Nice linear
equation connecting spatial gradients,
flow, and temporal change:

V. I| VI Al
Do Do Do

pmmm— v | V(o] -

bi Di

Pixel differences

computed as
Vxl » VyI p Al =1 — I 44
Spatial K % " |

gradients VI
computed A X
on second

image I;41 x* = (ATA)_lATb

Solve as (ATA)"tATb



Recap: LK Flow rests on various assumptions

* Brightness constancy

* No Occlusions
* Small and locally uniform motions

But the most important: Invertibility of ATA






Perhaps The Most Important Assumption: Invertibility

Po Po Po

ox
At point p; in the patch [ = | Al
; 2 i

(ATA)"1ATh

We assumed we could invert, i.e. compute (ATA)~?!
When would this fail? (4TA4),, is low-rank!

And what does that mean?

We will see: this means that the patch must be sufficiently ‘interesting’



Recall: Rank of AT A = Rank of A

e Easy to see from the SVD:
A =UzVT
" So, ATA =VvIUTUXVT = VZ?VT (since UTU = 1)
= So, eigenvalues of AT A are square of singular values of 4

= So, number of non-zero eigenvalues of AT A = number of non-zero
singular values of A

= So rank of ATA =rank of A

All of this holds for any matrix A. Now, what does this mean for our specific
setting?



The Rank of the Spatial Gradients Matrix A

e Low-rank (AT 4),,, means that the rank(474) < 2.
* So, rank(4) < 2.

* Every row is the spatial gradient at a point in the patch.

V.1 V. I
xpo ypo

At point p; in the patch ‘Vxl Vyl

bi pi

Rank k means that there are k linearly independent VI ,
rows in the spatial gradient matrix. Spatial ] n

vyf |

Pn

gradients VI

computed
on second A
image I44




Low-Rank A

Rank(A)=0
* This means that there are no linearly independent rows in the matrix.

* This can only happen when the matrix is all zeros.

* j.e. spatial gradient are all zero!



Barber Pole Illusion: lllustrating Rank Deficiency in AT A
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Rank O: The White Wall Problem

I T — No gradient / close-to-zero gradient = difficult to match.
v H_l( ! y) O This is the ‘White wall problem’

Indistinguishable

s



“White Wall” / Flat Patches In Our Yard Example

These patches don’t have strong gradients.
Eigenvalues of AT A are both small. Rank ~ 0
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Flat “Rank O” Patches in Barber’s Pole
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Low-Rank A

Rank(A)=0

* This means that there are no linearly independent rows in the matrix.
* This can only happen when the matrix is all zeros.

* j.e. spatial gradient are all zero!

Rank(A)=1

* This means that there is exactly one linearly independent row in the matrix.
* This means all the other rows are multiples of that one row.

* In other words, the gradients are all aligned. (don’t have to be constant)



Rank 1: Uniform Shading / Constant Gradients

All the (non-zero) gradients in a region are aligned.

V[Hl(g;? y) —=c, Vx,y No information along direction perpendicular to gradient
Often happens in patches that are flat everywhere except for
one contour




A patch with “alighed” gradients

Just like the line, the patch with all aligned (but not equal) gradients is also
rank 1, and only permits seeing flow in the direction of the gradient.




(Approximate) Rank 1 Regions in Our Yard Example
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For our example, how high along the tree are we?
Eigenvalues of AT A at these patches are one very

large, another very small.

Rank ~ 1




Rank 1 Regions in Barber’s Pole

So are there any regions in barber’s pole that allow flow computation
through invertible AT A? (Back to this in a few slides)
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Consequence of Uninvertibility of AT A

* Most places in the image are ‘uninteresting” — we can’t track them — the
interesting places are ‘sparse’.

* Flat regions are bad, edges are bad.

 “Corners” and high-texture regions are good.

Need to find such “features” that are easily trackable.
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Good Features / Corners

There is a large literature on this spanning
decades, and it typically involves the
eigenvalues of AT A.

Module on this later in the course if
time permits.

Proceedings DARPA Iinage Understanding Workshop, April 1981, pp. 121-130

essentially the same but shorter version of this paper was presented and included in the

Proc_7th Intl Joint Conf on Artificial Intelligence (LICAD) 1981, August 24-25,
Vancouver, British Columbia, pp.674-679,

when you refer to the work, please refer to the [JCAIL paper.

An Iterative Image Registration Technigue
with an Application to Stereo Vision

Bruce D. Lucas
Takeo Kanado
Computer Sgienca Department

Carnegie-NMetfon University
Pitisburgh, Pennsylvania 15213

Shape and Motion from Image Streams: a Factorization Method —Part 3

Detection and Tracking of Point Features
Technical Report CMU-CS-91-132

Carlo Tomasi Takeo Kanade

April 1991

Good Features to Track

Jianbo Shi
Computer Science Department
Cornell University
Ithaca, NY 14853

Carlo Tomasi
Computer Science Department
Stanford University
Stanford, CA 94305



Corners in Barber’s Pole

So are there any regions in barber’s pole that allow flow computation
through invertible AT A?

AT A 7

]
|

Rank 0 — S=E
=33 LU

Rank 1 — S=FL
22—23 INRARANRN
e LU

Rank 2 =i ks
33538 M

! Motion field Optical flow

https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL COPIES/OWENS/LECT12/node4.html



https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT12/node4.html

Your brain looks for corners too!

Inside the barberpole, where there are no corners,
only edges, flow actually looks perpendicular to
stripes.

/,

It’s only on the rank 2 “corner” patches at the
boundaries of the pole that it looks vertical.

Thus, the fact that the flow looks vertical to you is ‘
evidence that you are relying on these corner points!




Optical Flow Confidence

* Check determinant of AT A (2x2 matrix) for invertibility.

* Can rank various pixels according to determinant, or
according to smallest singular value of A = sqgrt of smallest
eigenvalue of AT A

=" Smaller determinant or smaller eigenvalue => closer to
being uninvertible => low “confidence”

* Also possible for b to not be in the range of 4, i.e., the
minimum MSE solution x* produces high MSE ||Ax* — b||5

=" Can happen if assumptions are violated, e.g., the light
goes off, or an object became occluded, shiny surface etc.
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Extensions

There is a great deal of research T S
trying to avoid these assumptions: ol e g —— 1

Image from MATLAB site

 Compute flow bi-directionally for
better reliability

* Assume affine deformations /
other “motion models”

 Compute the flow on multiple
resolutions of the image and
iterate to capture larger flow

Image from wikipedia






Inferring 3D Motion from Optical
Flow



.

Which direction is the vehicle mov_in_g




Flow Contains 3D Motion Information

Optical Flow: The pattern of apparent motion of objects, surfaces, and edges
in a visual scene caused by the relative motion between an observer and a
scene.

|deally equal to motion field (motion of the projected 3D points), but not
always, as we have seen.

If we assume that it is equal to the motion field, then how does the optical
flow field look like for various camera-world relative 3D motions in a static
world?



Pure translation



Turning towards the right




Pure horizontal translation
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Pure rotation around vertical axis

—— —
—— ——
e — e —
—_— e —
— ——
A ——— —
— _—
 p— —_—
_— e —
— ——
-—————— e
-




The Problem of 3D Motion from Optical Flow

We want to answer precisely:

 How does the image of a point move when the camera moves? (or
equivalently, a static world moves relative to the camera)

* Could we use optical flow help compute the 3D camera motion?

= Recall: optical flow is not quite a motion field, but we will have to treat it
as such, in this pursuit.



Note: 2-View SfM Already Solves for “Motion”

If we know nothing about the camera motion and have no additional
information, inferring motion = 2-view SfM problem, specifically the
“motion” part of structure from motion!

* Recall the solution: Epipolar constraints eliminate the depth, then we solve

for E, then get camera motion R, T. Done!*
= *|n SfM, at this point, we also wanted to recover depth, so we triangulated.

* In this module, we instead address simpler settings where more
information is available to us and show more efficient methods.

" |n particular, R is known, or depths known (both reasonable for robots
and one for animals too)






Projection equations for calibrated camera Ay
X Y ‘

xXr :- 71 y — A - )
or in vector notation p = -~ P

(homogeneous p = (x,y,[1]), Euclidean P)

Y, / : : :
{ Object moving relative to
‘0 P | observer
/L
N



Equation 1: pixel motion in terms of 3D ebject motion
0N

Projection equations for calibrated camera AUy

— X Y
t=72Y9Y=7

i i 1
or in vector notation p = =P .
b=z Ay Moving observer

Differentiating w.r.t. time
ylelds:

Velocity of

projection praiection of
3D velocity




Equation 2: 3D object motion in terms of camera

motion ’
“wy
For a camera moving at velocity V L? Uy

spinning at angular velocity €2

All in camera coords
/
P=-QxP-V




Combining the two key equations

P=-QxP-V

P| Z

z Z"
Notation abuse warning: p = (x,y, 1), but we will sometimes write p = (x, y)!
And V = [V, V,, 1]

D=

“Left as an exercise to the reader” ;)

1 — —(1 + 22
p— L zV, — Vg N Y (1+2z%) vy 0
Z | yVz -V, I+y") —zy -
translaac;lal flow rotational flow inagpendent of depth

Optical flow has two additive components: translational and rotational.



Translational Flow Part 1: Distance from FOE

V.
) — - & |« Focus of
Q: What must the world look like for this image to p = X & B expansion (FOE)
be a translational flow map for forward motion? y I_/'y_
z
A: Z must be approx. constant
e e Tz
~ - Zas Change in x (@r y) coordinate is:
Y S N L i > ﬁ : |
e TV - <2 * proportional to how far away that
~ - _ 7~ T coordinate is from V.. /V, (or V,,/V,)
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