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Correction: DOFin P3P is 6

= DOF in P3P should be 6, instead of 5

Given the point correspondences, find camera pose R, T



Recap: we discussed the invertibility of AT A for optical
flow

At point p; in the patch

We assumed we could invert, i.e. compute (ATA4)~?!
When would this fail? (AT A4),, is low-rank!

When is it rank 0?  “Spatial gradients are all zero.”

When is it rank 17? “Spatial gradients are all aligned.”



Recap: Rank O and Rank 1 Regions in Barber’s Pole
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Recap: Consequence of Uninvertibility of A A

 Most places in the image are ‘uninteresting’ — we can’t track them — the

interesting places are ‘sparse’.
* Flat regions are bad, edges are bad.
e “Corners” and high-texture regions are good.

Need to find such “features” that are easily trackable.
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Recap: Rank 2 Region
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https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL COPIES/OWENS/LECT12/node4.html
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Why does the same motion appear to be
different when looking at it through different
apertures?







Predicting motion from flow
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Projection equations for calibrated camera A Uy

_ X _ Y
r=7Y=7

or in vector notation p = % P :
b=z Moving observer

y
(homogeneous p = (x,y,[1]), Euclidean P)\\Z

) bserver
/P\fo
RV



Equation 1: pixel motion in terms of 3D ebject motion

Projection equations for calibrated camera

_ X _ Y
L=7Y=7

or in vector notation p = %P

Differentiating w.r.t. time
yields:

Velocity of

projection prgiection of
3D velocity

1
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Moving observer




Equation 2: 3D object motion in terms of camera motion

. . (I
For a camera moving at velocity V \ Uy

spinning at angular velocity

All in camera coords
/
P=—-QxP-V




Combining the two key equations

P=-QxP-V

Pl Z

z  Z"
Notation abuse warning: p = (x,y, 1), but we will sometimes write p = (x, y)!
And V = [V, V,, 1]

D =

Prove it now on the blackboard
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Optical flow has two additive components: translational and rotational.

Assume that optical flow is computable and is equal to the motion field.
Given the optical flow field, can we work out the camera motion?



But first, let’s go back to understanding translational and rotational flow terms
from the decomposition

1 o
P=7
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Translational Flow Part 1: Distance from FOE

- |V Focus of
Q: What must the world look like for this image to p = x] — E T }//z expgnsion (FOE)
be a translational flow map for forward motion? y Z (T VE
z
A: Z must be approx. constant

(For each circle, roughly similar flow magnitudes when walking along it) 7. Change in x (or y) coordinate is:
- ) ) W\ T . } = LYy / P .
e TR . < R =  proportional to how far away that
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translational flow rotational flow independent of depth




Translational Flow Part 2: Inverse Time-To-Collision

Inverse “time to collision” of object Z plane with camera
v

=Bz

Change in pixel x (or y) coordinate is:

e proportional to how far away that pixel coordinate is from the focus of
expansion V.. /V, (or V,,/V;)

* inversely proportional to the time to collision of the camera with the Z
plane of the object in the camera coordinate system.

expansion (FOE)

SRSSES

i\ Focus of

Given a fixed camera motion, and fixed pixel distance from the FOE, flow «
inverse “depth” i.e. point moves less if farther away.*

*Here “depth” means Z coordinate i.e. distance from camera Z = 0 plane, not distance from camera center.



Flashback: We have seen FOE before. Epipole!

Recall that in 2-view geometry,
the epipole in one image plane is
the image of the other camera
center.

* Suppose camera center moves
from (0,0,0) at time O to
Ve, V3, V) at time 1.

* The image of the time-1 camera
: . Vy Vy .
at time O is Fx,v—y, i.e. the FOE!

Z Z

Note that FOE does not depend
on the scene, just the motion!

Can also arrive at the same conclusion by thinking
about FOE as the intersection of flow vectors. How is
this related to the epipole?

. ¥ Vz T — %& Focus of
P = y] = ? Z; expansion (FOE)
Y—lv,
ZHCh9 T~

Fig.9.8. Pure translational motion. (a) under the motion the epipole is a fixed point, i.e. has the same
coordinates in both images, and points appear to move along lines radiating from the epipole. The
epipole in this case is termed the Focus of Expansion (FOE). (b) and (c) the same epipolar lines are
overlaid in both cases. Note the motion of the posters on the wall which slide along the epipolar line.
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Not just robots, animals know € through the vestibular system (inner ear)!

If we know angular velocity Q (e.g. from IMU gyroscope) we can:

(1) compute optical flow p from the images (e.g. with LK)

(2) then from £, estimate rotational flow p,,: at each pixel
independent of the scene.

(3) then get Prans = P — Prot

What can we do knowing the rotational and translational flows separately in this way?

Turns out, we can efficiently find the camera velocity IV (up to scale)
and also time to collision!



Finding FOE ~ V upto scale ambiguity

v
 We said earlier, FOE = [ﬁ ,—y] € R?

Z Z

Remember, in SfM too,
we only computed
translation to scale!

* In homogeneous P? coordinates, we can write FOE as V ~ [Vx, Wy, VZ]

* For point with known translational flow (we temporarily use the notation p
instead of Pirans), its “flow line” is: p; X (p; + p1) = py X v

* FOE is the intersection of all flow lines. So, (p; X p;)TV =0

* Given n = 2 points and flows, V lies on each flow line:

(pl X ]jl)T\ We know how to find null vectors!

» \T
p2 X p2) V =0 I/ « the smallest right singular vector of 4!

o

\Pn X pn)T )

A

So, given camera angular velocity £, we can compute camera velocity V (to scale)




Next, Finding Time-To-Collision (TTC)

Inverse “time to collision”

v
T — Focus of
Vy expansion (FOE)
Y—lv,

o= 45
ptrans y Z
Having computed the FOE, we can compute:

y

. V .
Get inverse TTC: 2 = [/Purans]|
Z |lp—FOE||
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Animals do this!



Time to Collision (TTC
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Getting around the environment and doing things requires
precise timing of body movements. Moreover, there is often
little time available to pick up the visual information to organize
the action. Consider, for instance, a batsman hitting a fast
bowler or a bird alighting on a twig swaying in the wind. The
visual and motor systems evidently work in close harmony,
vision rapidly and directly providing the information for
controlling the action. Here, we present evidence in support of a
theory to explain how actions are visually timed. The evidence
derives from a film analysis of the spectacular plunge dive of one
of Britain’s largest seabirds, the gannet (Sula bassana).

The theory is based on an analysis of the visual input con-
sidered as an optic flow field"?. When the organism is moving

geometry is similar for a slanting dive.

-1 —
i .
~ 7 -
fh"d-\ ~ "‘7__
o o M
F "'1"' P —
—_— 1 "1\‘ - -\T‘
] - - -
e o
— Py
-~
/ S
.l"ﬁ'. "
-1 -~
ﬂ - Nature Vol. 293 24 September 1981 29
e 5. Spiess, F. N, et al, Science 207, 1421-1433 (1980). I
6. Corliss, J. B. Science 203, 1073-1083 (1979). Projection P r(f) O
. 7. Edmond, 1. M. et al. Earth planet. Sci. Lett. 46, 19-30 (1979). plane — T
8. Ruby, E. G., Wirsen, C. O. & Jannasch, H. W. Appl. envir. Microbiol. (in the press). {retina) AL
it 9. Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W. & Waterbury, J. B. \
Science 213, 340-342 (1981). :
10. Felbeck, H. Science 213, 336-338 (1981). Nodal point
11. Jones, M. L. Science 213, 333-336 (1981). of lens
12. Peck, H. D. Jr Enzymes 10, 651-669 (1974). N\
3 13. Latzko, E. & Gibbs, M. Pi. Physiol. 44, 205-300 (1969). \
14. Reid, R. G. B. Can. J. Zool. 58, 386-393 (1980). \
15. Los Angeles County {California) Sanitation District files. AN
16. Rau, G. H. Science 213, 338-340 (1981). Z(t N\
P 17. Ray, G. H. Nature 289, 484-485 (1981). \
18. Rau, G. H. & Hedges, J. 1. Science 203, 648-649 (1979). \
19. Emery, K. O. & Hulsemann, J. Deep-Sea Res. 8, 165-180 (1962). \
20. Hartman, O. & Barnard, I. L. Aflan Hancock Pacific Exped. 22, (1958). \
21. Nicholas, D. I. D., Ferrante, J. V. & Clarke, G. R. Analyt. Biochem. 98, 24-31 (1979). \
22. Lonsdale, P. Nature 281, 531-534 (1979). R P
T o o e
ol AT Z T T
o
Plummeting gannets: Yy
. . . > [
RN
a paradigm of ecological optics 722
\ -
Projection \\\\“\‘\: L
. e SNz T
David N. Lee & Paul E. Reddish pla:se P ndz= =t
A . i IS
Department of Psychology, University of Edinburgh, (retina) PN
Edinburgh EH8 9JZ, UK PASFITIANN
e
» /

Fig.1 How time-to-contact is specified in the optic flow field. The
schematic eye is, at time #, at height Z (¢) and moving vertically
downward with velocity V(1) towards the water surface. Light
reflected from the surface texture elements (for example, ripples)
passes through the nodal point of the lens and projects an expand-
ing optic flow pattern on to the retina. Considering an arbitrary
texture element P and its moving image P’, then from similar
triangles: Z(¢t)/R = 1/r(t). Differentiating with respect to time:
V(t)/R =v(t)/r(t)>. Finally, eliminating R, Z()/V(@)=
r(t)/v(t) =7(t); that is, the time-to-contact under constant closing
velocity is specified by the optical parameter 7(t). The optical



We know 2-view SfM can compute motion and depths from optical flow
given only (5) point correspondences

We’ve seen how to efficiently compute motion from optical flow, if {0 known,
plus (2) point correspondences.






SIFT (Scale Invariant Feature
Transform)



Motivation of SIFT

mlmage content is transformed into local feature
coordinates that are invariant to translation, rotation,
scale, and other imaging parameters

SIFT Features



What is SIFT (Scale Invariant Feature Transform)

* SIFT describes both a detector and descriptor




1. Multi-scale extrema detection

Second octave
[ ]

First octave
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Gaussian Difference of Gaussian (DoG)



Gaussian

Laplacian



1. Multi-scale extrema detection

Scale-space extrema

Selected if
larger than all
26 neighbors
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2. Keypoint Localization

2nd order Taylor series approximation of DoG scale-space

. of " 17 0* f
f(x)=Ff e T2 X
X = {X,Y, 0}
Take the derivative and solve for extrema
N2 p—1 -
XKy, = d f ﬁ
ox? 0Ox

Additional tests to retain only strong features



3. Orientation assighment

For a keypoint, L is the Gaussian-smoothed
image with the closest scale,

m(xz,y) = \/(L(_.r +1,y)—Llx—-1.y))*+ (L(xz.y+1) — L(x,y — 1))

x-derivative y-derivative

O(x,y) =tan ' ((L(x,y+1) — L(x,y = 1))/(L(x + 1,y) — L(z — 1,y)))

Detection process returns

{x,y,0,0}

location scale orientation



4. Keypoint Descriptor

Image Gradients
(4 x 4 pixel per cell, 4 x 4 cells)

S

FT descriptor

(16 cells x 8 directions = 128 dims)

Gaussian weighting
(sigma = half width)
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~ Discriminative power

Raw pixels Sampled Locally orderless Global histogram

Gaeneralization power







Summary: Methods for Computing Motion

* Given flow (or other) pointwise correspondences between nearby images,
" Plus (), can solve for FOE~V with just 2 2D-2D correspondences
" Plus depths, we can solve V and () with just 3 2D-2D correspondences
" Alone, we can solve for V and () with 5 correspondences (SfM)

= Known 3D scene, we can solve for single-frame camera pose with 3 2D-
3D correspondences (PnP)




Taking Stock Of 2-View Geometry: What We've Learned

* Given 2D point correspondences between 2 views:
= SfM: Finding 3D structure and camera motion (8-point algorithm)
" Finding homographies between views and building panoramas

* Given 2D point correspondences + camera rotation, find translation
e Given 2D point correspondences + depth, find rotation + translation

* Given camera pose and 2D point correspondences:
" Triangulation to find structure (used, e.g., in motion capture systems)

* Robustness to noisy correspondences:
" Hough Transforms
= RANSAC

* Coming up next, extending SfM to > 2 views:
* The Incremental Approach, through SLAM / odometry. ORB-SLAM
" The Global Approach i.e. Bundle Adjustment



