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Administrivia

Final Exam: 

The info is on courses.upenn.edu

Scope and format: 
haven’t fully decided it. Will let you know the details next week. 

http://courses.upenn.edu/


Correction: DOF in P3P is 6

 DOF in P3P should be 6, instead of 5



Recap: we discussed the invertibility of 𝑨𝑨𝑻𝑻𝑨𝑨 for optical 
flow

We assumed we could invert, i.e. compute 𝐴𝐴𝑇𝑇𝐴𝐴 −1

When would this fail? 𝐴𝐴𝑇𝑇𝐴𝐴 2×2 is low-rank!

When is it rank 0?

When is it rank 1?

“Spatial gradients are all zero.”

“Spatial gradients are all aligned.”



Recap: Rank 0 and Rank 1 Regions in Barber’s Pole

Rank 0

Rank 1

𝐴𝐴𝑇𝑇𝐴𝐴

Indistinguishable 
along this direction



Recap: Consequence of Uninvertibility of 𝐴𝐴𝑇𝑇𝐴𝐴

• Most places in the image are ‘uninteresting’ – we can’t track them – the 
interesting places are ‘sparse’. 

• Flat regions are bad, edges are bad. 
• “Corners” and high-texture regions are good.

Need to find such “features” that are easily trackable.



Recap: Rank 2 Region 

https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT12/node4.html

Rank 0

Rank 1

Rank 2

𝐴𝐴𝑇𝑇𝐴𝐴

https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT12/node4.html


Why does the same motion appear to be 
different when looking at it through different 
apertures?





Predicting motion from flow



Moving observer

Object moving relative to 
observer

(homogeneous 𝑝𝑝 = 𝑥𝑥,𝑦𝑦, [1] , Euclidean 𝑃𝑃)



Velocity of 
projection Projection of 

3D velocity

Moving observer

Equation 1: pixel motion in terms of 3D object motion



Moving observer

Equation 2: 3D object motion in terms of camera motion

For a camera moving at velocity 𝑽𝑽 
spinning at angular velocity 𝛀𝛀

All in camera coords



Combining the two key equations

Notation abuse warning: 𝑝𝑝 = (𝑥𝑥,𝑦𝑦, 1), but we will sometimes write 𝑝̇𝑝 = 𝑥̇𝑥, 𝑦̇𝑦 𝑇𝑇

And 𝑉𝑉 = 𝑉𝑉𝑥𝑥 ,𝑉𝑉𝑦𝑦 ,𝑉𝑉𝑧𝑧
𝑇𝑇

Prove it now on the blackboard

Assume that optical flow is computable and is equal to the motion field. 
Given the optical flow field, can we work out the camera motion? 



But first, let’s go back to understanding translational and rotational flow terms 
from the decomposition



Translational Flow Part 1: Distance from FOE

Focus of expansion (FOE)

Focus of 
expansion (FOE)𝒑̇𝒑 = 𝑥̇𝑥

𝑦̇𝑦

Change in 𝑥𝑥 (or 𝑦𝑦) coordinate is: 
• proportional to how far away that 

coordinate is from 𝑉𝑉𝑥𝑥/𝑉𝑉𝑧𝑧 (or 𝑉𝑉𝑦𝑦/𝑉𝑉𝑧𝑧)

Q: What must the world look like for this image to 
be a translational flow map for forward motion?

A: 𝑍𝑍 must be approx. constant

(For each circle, roughly similar flow magnitudes when walking along it)



Translational Flow Part 2: Inverse Time-To-Collision
Inverse “time to collision” of object 𝑍𝑍 plane with camera 

Change in pixel 𝑥𝑥 (or 𝑦𝑦) coordinate is: 
• proportional to how far away that pixel coordinate is from the focus of 

expansion 𝑉𝑉𝑥𝑥/𝑉𝑉𝑧𝑧 (or 𝑉𝑉𝑦𝑦/𝑉𝑉𝑧𝑧)
• inversely proportional to the time to collision of the camera with the 𝑍𝑍 

plane of the object in the camera coordinate system.

Given a fixed camera motion, and fixed pixel distance from the FOE, flow ∝ 
inverse “depth” i.e. point moves less if farther away.*
*Here “depth” means 𝑍𝑍 coordinate i.e. distance from camera 𝑍𝑍 = 0 plane, not distance from camera center. 

Focus of 
expansion (FOE)𝒑̇𝒑 = 𝑥̇𝑥

𝑦̇𝑦



Flashback: We have seen FOE before. Epipole!
Recall that in 2-view geometry, 
the epipole in one image plane is 
the image of the other camera 
center. 
• Suppose camera center moves 

from (0,0,0) at time 0 to 
(𝑉𝑉𝑥𝑥 ,𝑉𝑉𝑦𝑦 ,𝑉𝑉𝑧𝑧) at time 1. 

• The image of the time-1 camera 
at time 0 is 𝑉𝑉𝑥𝑥

𝑉𝑉𝑧𝑧
, Vy
Vz

, i.e. the FOE!

Note that FOE does not depend 
on the scene, just the motion!

Focus of 
expansion (FOE)𝒑̇𝒑 = 𝑥̇𝑥

𝑦̇𝑦

Can also arrive at the same conclusion by thinking 
about FOE as the intersection of flow vectors. How is 

this related to the epipole? 

ZH Ch 9



Not just robots, animals know 𝛀𝛀 through the vestibular system (inner ear)!

Rotational Flow

If we know angular velocity 𝛀𝛀 (e.g. from IMU gyroscope) we can: 
(1) compute optical flow 𝒑̇𝒑 from the images (e.g. with LK)
(2) then from 𝛀𝛀, estimate rotational flow 𝒑̇𝒑rot at each pixel 

independent of the scene.
(3) then get 𝒑̇𝒑trans =  𝒑̇𝒑 − 𝒑̇𝒑rot

What can we do knowing the rotational and translational flows separately in this way?

Turns out, we can efficiently find the camera velocity 𝑉𝑉 (up to scale) 
and also time to collision! 



Finding FOE ∼ 𝑽𝑽 upto scale ambiguity

• We said earlier, FOE = 𝑉𝑉𝑥𝑥
𝑉𝑉𝑧𝑧

 , 𝑉𝑉𝑦𝑦
𝑉𝑉𝑧𝑧

∈ ℝ2

• In homogeneous ℙ𝟐𝟐 coordinates, we can write FOE as  𝑽𝑽 ∼ 𝑉𝑉𝑥𝑥 ,𝑉𝑉𝑦𝑦 ,𝑉𝑉𝑧𝑧
• For point with known translational flow (we temporarily use the notation 𝒑̇𝒑 

instead of 𝒑̇𝒑trans), its “flow line” is:  𝑝𝑝1 × 𝑝𝑝1 + ̇𝑝𝑝1 = 𝑝𝑝1 × ̇𝑝𝑝1
• FOE is the intersection of all flow lines. So, 𝑝𝑝1 × ̇𝑝𝑝1 𝑇𝑇𝑉𝑉 = 0
• Given 𝑛𝑛 ≥ 2 points and flows, 𝑽𝑽 lies on each flow line: 

So, given camera angular velocity 𝛀𝛀, we can compute camera velocity 𝑽𝑽 (to scale)

We know how to find null vectors!

𝑉𝑉 ← the smallest right singular vector of 𝐴𝐴!

Remember, in SfM too, 
we only computed 

translation to scale!



Next, Finding Time-To-Collision (TTC)

Focus of 
expansion (FOE)𝒑̇𝒑trans = 𝑥̇𝑥

𝑦̇𝑦

Inverse “time to collision”

Having computed the FOE, we can compute:
Get inverse TTC: 𝑉𝑉𝑧𝑧

𝑍𝑍
= | 𝑝̇𝑝trans |

| 𝑝𝑝−𝐹𝐹𝐹𝐹𝐹𝐹 |

Animals do this!



Time to Collision (TTC)



We’ve seen how to efficiently compute motion from optical flow, if Ω known, 
plus (2) point correspondences.

We know 2-view SfM can compute motion and depths from optical flow 
given only (5) point correspondences





SIFT (Scale Invariant Feature 
Transform)



Motivation of SIFT

Image content is transformed into local feature 
coordinates that are invariant to translation, rotation, 
scale, and other imaging parameters

SIFT Features



What is SIFT (Scale Invariant Feature Transform)

• SIFT describes both a detector and descriptor

1. Multi-scale extrema detection

2. Keypoint localization

3. Orientation assignment

4. Keypoint descriptor



1. Multi-scale extrema detection



1. Multi-scale extrema detection



1. Multi-scale extrema detection



2. Keypoint Localization



3. Orientation assignment



4. Keypoint Descriptor







Summary: Methods for Computing Motion

• Given flow (or other) pointwise correspondences between nearby images,
 Plus Ω, can solve for 𝐹𝐹𝐹𝐹𝐹𝐹~𝑉𝑉 with just 2 2D-2D correspondences
 Plus depths, we can solve 𝑉𝑉 and Ω with just 3 2D-2D correspondences
 Alone, we can solve for 𝑉𝑉 and Ω with 5 correspondences (SfM)
 Known 3D scene, we can solve for single-frame camera pose with 3 2D-

3D correspondences (PnP)



Taking Stock Of 2-View Geometry: What We’ve Learned
• Given 2D point correspondences between 2 views:
 SfM: Finding 3D structure and camera motion (8-point algorithm)
 Finding homographies between views and building panoramas

• Given 2D point correspondences + camera rotation, find translation
• Given 2D point correspondences + depth, find rotation + translation
• Given camera pose and 2D point correspondences:
 Triangulation to find structure (used, e.g., in motion capture systems)

• Robustness to noisy correspondences:
 Hough Transforms
 RANSAC

• Coming up next, extending SfM to > 2 views:
 The Incremental Approach, through SLAM / odometry. ORB-SLAM
 The Global Approach i.e. Bundle Adjustment


