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Administrivia

Mid-term Exam (current scores).
Q1.1 will be regraded.



Recap Two-view Reconstruction

With figures and text from mathworks.com
https://www.mathworks.com/help/vision/ug/monocular-visual-simultaneous-localization-and-mapping.html

https://www.mathworks.com/help/vision/ug/monocular-visual-simultaneous-localization-and-mapping.html


Two Calibrated Views of the Same 3D Scene

𝑅𝑅 𝜆𝜆𝜆𝜆 + 𝑇𝑇 = 𝜇𝜇𝜇𝜇



PnP vs. 2-View Structure from Motion (SfM)

PnP
1. Gn. “world frame” points 𝑃𝑃𝑖𝑖  

and corresponding calibrated 
coordinates 𝐾𝐾−1𝑥𝑥𝑖𝑖

2. Set camera frame 3D 
coordinates (with scale/depth 
ambiguity) to 𝜆𝜆𝑖𝑖𝐾𝐾−1𝑥𝑥𝑖𝑖

3. Then solve (for 𝑅𝑅,𝑇𝑇, 𝜆𝜆):

𝜆𝜆𝑖𝑖𝐾𝐾−1𝑥𝑥𝑖𝑖 = 𝑅𝑅𝑃𝑃𝑖𝑖 + 𝑇𝑇 ∀𝑖𝑖 

Where 𝑅𝑅,𝑇𝑇 denotes 
transformation between camera 
and world.

Structure from Motion
1. No “world frame”. Instead, just 

calibrated image plane 
coordinates 𝑝𝑝𝑖𝑖 = 𝐾𝐾1−1𝑥𝑥𝑖𝑖1 and 
𝑞𝑞𝑖𝑖 = 𝐾𝐾2−1𝑥𝑥𝑖𝑖2 of the same 3D 
point 𝑷𝑷𝒊𝒊.

2. So corresponding camera 
frame 3D coordinates in the 
two frames are: 𝜆𝜆𝑖𝑖𝑝𝑝𝑖𝑖 and 𝜇𝜇𝑖𝑖𝑞𝑞𝑖𝑖.

3. Now solve for “motion 
between cameras” 𝑅𝑅,𝑇𝑇 and 
the scales 𝜆𝜆𝑖𝑖 ,𝜇𝜇𝑖𝑖 (which permit 
getting 3D coordinates of 𝑃𝑃𝑖𝑖  in 
either camera frame)



“Epipolar Constraints” Between Two Views of a Scene

𝑅𝑅 𝜆𝜆𝑝𝑝 + 𝑇𝑇 = 𝜇𝜇𝑞𝑞

𝒒𝒒𝑖𝑖𝑇𝑇 𝑇𝑇 × 𝑅𝑅𝒑𝒑𝑖𝑖 = 0



The Essential Matrix 𝐸𝐸

Now linear in the new unknowns 𝐸𝐸3×3 ! But will need to recover 𝑇𝑇3×1 ,𝑅𝑅3×3 later.

We had: 𝒒𝒒𝑖𝑖𝑇𝑇 𝑇𝑇 × 𝑅𝑅𝒑𝒑𝑖𝑖 = 0

⇒ 𝒒𝒒𝑖𝑖𝑇𝑇( �𝑇𝑇𝑅𝑅)  𝒑𝒑𝑖𝑖 = 0

Renaming 𝐸𝐸 = ( �𝑇𝑇𝑅𝑅):

𝒒𝒒𝑖𝑖𝑇𝑇𝐸𝐸 𝒑𝒑𝑖𝑖 = 0

“Essential matrix”



Epipolar Lines in Essential Matrix Notation



Epipolar Lines Constrain Point Correspondences!

ZH Ch9



8-Point Algorithm

• Recall that each correspondence gives us one linear equation in the 
unknowns 𝐸𝐸

Longuet-Higgins 1981

“𝒂𝒂𝟏𝟏×𝟗𝟗”
“𝑬𝑬′𝟗𝟗×𝟏𝟏”



After solving for 𝐸𝐸, not Quite Done Yet!
𝐸𝐸 = �𝑇𝑇𝑅𝑅 has fewer than 8 DOF. 𝑇𝑇 has 3 DOF (+3), 𝑅𝑅 has 3 DOF (+3), and 𝐸𝐸 is 
scale invariant (−1), so total 5 DOF.  So not any 3x3 matrix is a valid essential 
matrix. 

• Problem: Given the above, how to ensure that the estimated 𝑬𝑬 is a valid 
essential matrix?

• Problem: How to decompose 𝑬𝑬 into the �𝑻𝑻,𝑹𝑹 required in SfM?

*https://tutorial.math.lamar.edu/classes/calciii/quadricsurfaces.aspx

https://tutorial.math.lamar.edu/classes/calciii/quadricsurfaces.aspx


Constructing Valid Essential Matrices and Decomposing 
Them

Part 1: Proving ‘necessary’ (“If E is essential, then …”) will tell us 
about properties of essential matrices, so we can correct the E 
matrices from the direct method to become valid.

Part 2: Proving ‘sufficient’ (“If singular values …, then ...”) will help 
us solve 𝑅𝑅,𝑇𝑇 from 𝐸𝐸 for a particular pair of cameras.



Cases that can’t do 2-view SfM

Case 1: 𝐴𝐴 may be too low-rank, i.e., rank(𝐴𝐴) < 8! This can happen quite 
frequently in practice, e.g., smartphone moving facing a wall.

Case 2: No translation

*https://tutorial.math.lamar.edu/classes/calciii/quadricsurfaces.aspx

Field of viewImage 1

Image 2

Optical Center

https://tutorial.math.lamar.edu/classes/calciii/quadricsurfaces.aspx


The full two-view 8-point algorithm
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The full two-view 8-point algorithm
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Correspondences are not clean!
Or we might have to group them !
(two planes=>two homographies)



Back to basics: a single line fitting problem 



Approach #1: Hough Transform



Approach #2: RANSAC in the line fitting setting

• Set maximum inlier count 𝑀𝑀 = 0
• For some 𝑘𝑘 randomly chosen pairs out of Cn2 pairs of points:
 Find the corresponding line 𝑙𝑙
 Check how many other points approximately lie on this line (“inliers”).
 If 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 > 𝑀𝑀, set 𝑀𝑀 = 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and set best candidate to 𝑙𝑙



One Approach to Get Correspondences: Optical Flow

“Tracks” attached to 3D regions in the world that show how they moved 
throughout a video. 



Lucas-Kanade Optical Flow
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𝑥𝑥 derivative 𝑦𝑦 derivative

At point 𝑝𝑝𝑖𝑖 in the patch

Spatial 
gradients ∇𝐼𝐼 
computed 
on second 
image 𝐼𝐼𝑡𝑡+1 

Pixel differences 
computed as Δ𝐼𝐼

= 𝐼𝐼𝑡𝑡 − 𝐼𝐼𝑡𝑡+1

𝐴𝐴 𝒙𝒙 𝑏𝑏

Recall that for overdetermined 𝐴𝐴𝐴𝐴 = 𝑏𝑏, we solve 
min
x

||𝐴𝐴𝐴𝐴 − 𝑏𝑏||22 using the pseudo-inverse 𝐴𝐴𝑇𝑇𝐴𝐴 −1𝐴𝐴𝑇𝑇𝑏𝑏

𝑥𝑥∗ = 𝐴𝐴𝑇𝑇𝐴𝐴 −1𝐴𝐴𝑇𝑇𝑏𝑏

Stacking the 
equations:



Perhaps The Most Important Assumption: Invertibility

We assumed we could invert, i.e. compute 𝐴𝐴𝑇𝑇𝐴𝐴 −1

When would this fail? 𝐴𝐴𝑇𝑇𝐴𝐴 2×2 is low-rank!



“Interesting” Patch (Rank 2 patch)

https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT12/node4.html

Rank 0

Rank 1

Rank 2

𝐴𝐴𝑇𝑇𝐴𝐴invertible 𝐴𝐴𝑇𝑇𝐴𝐴? 

No

No

Yes!

https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT12/node4.html


Optical Flow: Translational Flow + Rotational Flow

Notation abuse warning: 𝑝𝑝 = (𝑥𝑥,𝑦𝑦, 1), but we will sometimes write 𝑝̇𝑝 = 𝑥̇𝑥, 𝑦̇𝑦 𝑇𝑇

And 𝑉𝑉 = 𝑉𝑉𝑥𝑥 ,𝑉𝑉𝑦𝑦 ,𝑉𝑉𝑧𝑧
𝑇𝑇



Not just robots, animals know 𝛀𝛀 through the vestibular system (inner ear)!

Rotational Flow

If we know angular velocity 𝛀𝛀 (e.g. from IMU gyroscope) we can: 
(1) compute optical flow 𝒑̇𝒑 from the images (e.g. with LK)
(2) then from 𝛀𝛀, estimate rotational flow 𝒑̇𝒑rot at each pixel 

independent of the scene.
(3) then get 𝒑̇𝒑trans =  𝒑̇𝒑 − 𝒑̇𝒑rot

What can we do knowing the rotational and translational flows separately in this way?

Turns out, we can efficiently find the camera velocity 𝑉𝑉 (up to scale) 
and also time to collision! 



Translational Flow
Inverse “time to collision” of object 𝑍𝑍 plane with camera 

Focus of 
expansion (FOE)𝒑̇𝒑 = 𝑥̇𝑥

𝑦̇𝑦

Focus of expansion (FOE)

(For each circle, roughly similar flow magnitudes when walking along it)



Finding FOE ∼ 𝑽𝑽 upto scale ambiguity

• We said earlier, FOE = 𝑉𝑉𝑥𝑥
𝑉𝑉𝑧𝑧

 , 𝑉𝑉𝑦𝑦
𝑉𝑉𝑧𝑧

∈ ℝ2

• In homogeneous ℙ𝟐𝟐 coordinates, we can write FOE as  𝑽𝑽 ∼ 𝑉𝑉𝑥𝑥 ,𝑉𝑉𝑦𝑦 ,𝑉𝑉𝑧𝑧
• For point with known translational flow (we temporarily use the notation 𝒑̇𝒑 

instead of 𝒑̇𝒑trans), its “flow line” is:  𝑝𝑝1 × 𝑝𝑝1 + ̇𝑝𝑝1 = 𝑝𝑝1 × ̇𝑝𝑝1
• FOE is the intersection of all flow lines. So, 𝑝𝑝1 × ̇𝑝𝑝1 𝑇𝑇𝑉𝑉 = 0
• Given 𝑛𝑛 ≥ 2 points and flows, 𝑽𝑽 lies on each flow line: 

So, given camera angular velocity 𝛀𝛀, we can compute camera velocity 𝑽𝑽 (to scale)

We know how to find null vectors!

𝑉𝑉 ← the smallest right singular vector of 𝐴𝐴!

Remember, in SfM too, 
we only computed 

translation to scale!



Next, Finding Time-To-Collision (TTC)

Focus of 
expansion (FOE)𝒑̇𝒑trans = 𝑥̇𝑥

𝑦̇𝑦

Inverse “time to collision”

Having computed the FOE, we can compute:
Get inverse TTC: 𝑉𝑉𝑧𝑧

𝑍𝑍
= | 𝑝̇𝑝trans |

| 𝑝𝑝−𝐹𝐹𝐹𝐹𝐹𝐹 |



Methods for Computing Motion from Flow

• Given flow (or other) pointwise correspondences between nearby images,
 Plus Ω, can solve for 𝐹𝐹𝐹𝐹𝐹𝐹~𝑉𝑉 with just 2 2D-2D correspondences
 Alone, we can solve for 𝑉𝑉 and Ω with 5 correspondences (SfM)
 Known 3D scene, we can solve for single-frame camera pose with 3 2D-

3D correspondences (PnP)



Motivation of SIFT

Image content is transformed into local feature 
coordinates that are invariant to translation, rotation, 
scale, and other imaging parameters

SIFT Features



What is SIFT (Scale Invariant Feature Transform)

• SIFT describes both a detector and descriptor

1. Multi-scale extrema detection

2. Keypoint localization

3. Orientation assignment

4. Keypoint descriptor



1. Multi-scale extrema detection



1. Multi-scale extrema detection



2. Keypoint Localization



3. Orientation assignment



4. Keypoint Descriptor



Towards Multi-view Reconstruction

• Coming up next, extending SfM to > 2 views:
 The Incremental Approach, through SLAM / odometry. ORB-SLAM
 The Global Approach i.e. Bundle Adjustment



Visual Odometry / SLAM

With figures and text from mathworks.com
https://www.mathworks.com/help/vision/ug/monocular-visual-simultaneous-localization-and-mapping.html

https://www.mathworks.com/help/vision/ug/monocular-visual-simultaneous-localization-and-mapping.html


“Visual Odometry”

What is Odometry ?
• Measuring how far you go by counting wheel rotations or steps. 
• Known as “path integration” in biological perception.
• More general, integration of velocity or acceleration measurements: 

inertial odometry.
What is Visual Odometry ?
• The process of incrementally estimating your position and orientation with 

respect to an initial reference frame by tracking visual features, in an 
unknown environment



Visual Odometry

Kostas Daniilidis



Visual odometry on Mars!



Why is Vision the Right Tool for Odometry?
• Why not just simple wheel odometry like on a car?
On rugged terrain with slopes, rocks, slip etc. simple wheel odometry 

like on a car doesn’t cut it.
Unmanned Aerial Vehicles (UAVs) don’t have wheels. 

• Why not inertial measurement units (IMU)?
  Drift because of double integration over acceleration inputs.

• Why not GPS?
Not accurate enough (up to a few meters off), 
Missing in many places (like on Mars, or in the deep ocean).



Back to Mars



Do We Need New Methods For Visual Odometry?
Q: Didn’t we just discuss many methods for computing camera motion from 
2 frames? Can we not just keep repeating this for every new pair of frames 
and integrating the motions?
A: Indeed, a naïve system could look like this, but this would lead to drift, i.e., 
accumulating errors over time. 

Can avoid drift by maintaining some kind of consistency over longer 
durations, rather than make independent measurements over pairs of 
consecutive frames alone.

Emphasis on avoiding drift
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