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Recap Two-view Reconstruction

With figures and text from mathworks.com

https://www.mathworks.com/help/vision/ug/monocular-visual-simultaneous-localization-and-mapping.html



https://www.mathworks.com/help/vision/ug/monocular-visual-simultaneous-localization-and-mapping.html

Two Calibrated Views of the Same 3D Scene

R(Ap) +T = uq

Given 2D correspondences (p,q)

Find motion R, T and depths A, u.




PnP vs. 2-View Structure from Motion (SfM)

PnP

1.

Gn. “world frame” points P;
and corresponding calibrated
coordinates K ~1x;

Set camera frame 3D
coordinates (with scale/depth
ambiguity) to ;K ~1x;

Then solve (for R, T, A):

/L-K_lxi = RPl + T Vi

Where R, T denotes
transformation between camera
and world.

Structure from Motion

1.

No “world frame”. Instead, just
calibrated image plane
coordinates p; = K{ 'x;; and
q; = K, 'x;, of the same 3D
point P;.

So corresponding camera
frame 3D coordinates in the
two frames are: A;p; and u;q;.
Now solve for “motion
between cameras” R, T and
the scales 4;, u; (which permit
getting 3D coordinates of P; in
either camera frame)



“Epipolar Constraints” Between Two Views of a Scene

We can eliminate the depths from R(Ap) + T = uq and obtain the epipolar
constraint:

q! (T X Rpy) =0



The Essential Matrix E

We had: q; (T X Rp;) = 0
= q; (TR) p;=0

Renaming E = (TR):

qiEp; =0

ep ~ —RI'T eq~ T

“Essential matrix”

Now linear in the new unknowns E3+3 ! But will need to recover T3y, R3x3 later.



Epipolar Lines in Essential Matrix Notation

Equation ¢/ Ep = 0 is a line equation in the p-plane with line coefficients
ETq. It is called the epipolar line in p-plane.



Epipolar Lines Constrain Point Correspondences!

Epipolarline

epipolar line
for x

Knowledge of the E-matrix allows us to search for points g corresponding
to points p along the epipolar line, reducing correspondence to 1D-search.

Position of the corresponding point g along epipolar line varies with depth
of the 3D points which is still constrained to lie on the ray through p.



8-Point Algorithm

e Recall that each correspondence gives us one linear equation in the
unknowns E

o

A1x9

)

Is this really linear in E?

q! E5«3p; = 0 is a single equation that is linear in the elements of E
Can write this out explicitly as below.

If
FE = (61 €9 63)

then epipolar constraint can be rewritten as

x
a’ (61 €2 63) (py) = q" (pxel + Dye2 +Pz€3)
'z

e1
(p=q” pya® p2q") (62) =0
e3

This equation is linear

e nl ”
E 9x1



After solving for E, not Quite Done Yet!

E = TR has fewer than 8 DOF. T has 3 DOF (+3), R has 3 DOF (+3), and E is

scale invariant (—1), so total 5 DOF. So not any 3x3 matrix is a valid essential
matrix.

* Problem: Given the above, how to ensure that the estimated E is a valid
essential matrix?

* Problem: How to decompose E into the T, R required in SfM?

*https://tutorial.math.lamar.edu/classes/calciii/quadricsurfaces.aspx



https://tutorial.math.lamar.edu/classes/calciii/quadricsurfaces.aspx

Constructing Valid Essential Matrices and Decomposing
Them

Necessary and sufficient condition: E is essential iff
Jl(E) — JQ(E) 7& 0 and Jg(E) = 0.

Part 1: Proving ‘necessary’ (“If E is essential, then ...”) will tell us
about properties of essential matrices, so we can correct the E
matrices from the direct method to become valid.

Part 2: Proving ‘sufficient’ (“If singular values ..., then ...”) will help
us solve R, T from E for a particular pair of cameras.



Cases that can’t do 2-view SfM

Case 1: A may be too low-rank, i.e., rank(A) < 8! This can happen quite
frequently in practice, e.g., smartphone moving facing a wall.

Case 2: No translation

Optical Center

Field of view

*https://tutorial.math.lamar.edu/classes/calciii/quadricsurfaces.aspx



https://tutorial.math.lamar.edu/classes/calciii/quadricsurfaces.aspx

The full two-view 8-point algorithm

A (8x9)

Ll © Build the homogeneous linear system by stacking epipolar constraints
Y— T , |
o q; (T x Rp;) =0,i=1,...,8:
c - -
O : el
= T /
= (2 @ pi) €q

_ /
8 i |t €3
fd
O
()
R
o

@ Let | e, | be the nullspace of A (if og = 0 give up)




The full two-view 8-point algorithm

© [ ¢ ¢ e} | =Udiag (0] o} o4)V*. Then use the following
estimate of the essential matrix:

E = Udiag (“i ;“5,“5;"5,0) yT

O T=+i3s R=URy, VT or R=URz_p,,V"
@ Try all four pairs (T, R) to check if reconstructed points are in front

Make E valid

of the cameras | Aq = uRp + T | give A, u > 0.

Decompose
Into T, R



Correspondences are not clean!
Or we might have to group them |

(two planes=>two homographies)




Back to basics: a single line fitting problem

Given data (x;,y;) belonging to a line

xcosd +ysinf =d



Approach #1: Hough Transform

Line through two points (z1,%y1) and (x2,y2) can be found as the
intersection (60, d) of the two curves:

d = cosfzq + sinfy;
d = cosfOxg—+ sinfys

20 40 1] ao 100 1210 1410 160
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Approach #2: RANSAC in the line fitting setting

e Set maximum inlier count M = 0

* For some k randomly chosen pairs out of CZ pairs of points:
" Find the corresponding line [
* Check how many other points approximately lie on this line (“inliers”).
" If Ninjiers > M, set M = N0 and set best candidate to [




One Approach to Get Correspondences: Optical Flow

.

i

“Tracks” attached to 3D regions in the world that show how they moved
throughout a video.




. r[0x] _
Lucas-Kanade Optical Flow TGy 5| =aen)]

Stacking the
equations:

Vo l| VI
Po Po
Ermr— V.| | (5] =
pi pi 5y
Pixel differences
computed as Al
p Vyl p = It — It41
Spatial n n—“ }
gradients VI Y Y
computed A X
on second
mage I, x* = (ATA)"1ATD

Recall that for overdetermined Ax = b, we solve
min||Ax — b||5 using the pseudo-inverse (ATA)"1ATh
X



Perhaps The Most Important Assumption

v, I

V[

v, I

Po

v, I

x* = (ATA)"1ATb

Po

Di

Pn-

. Invertibility

[6x _
oyl

X

_AI =
0

We assumed we could invert, i.e. compute (ATA4)~?!
When would this fail? (AT A4),, is low-rank!



“Interesting” Patch (Rank 2 patch)
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! Maotion field Optical flow

https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL COPIES/OWENS/LECT12/node4.html



https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT12/node4.html

Optical Flow: Translational Flow + Rotational Flow

P=-QxP-V

Pl Z
z  Z"
Notation abuse warning: p = (x,y, 1), but we will sometimes write p = (x, y)!
And V = [V, V,, 1]

D =

1 — —(1 + 22
p— L zV, — Vg N Y (1+2z%) vy 0
Z | yVz -V, I+y") —zy —a
translagg;lal flow rotational flow inagpendent of depth

Optical flow has two additive components: translational and rotational.



. N A Ty —(1+2%) vy
Rotational Flow =zl o e T Lo
translat?ornal flow rotational flow inagpendent of depth
. Ty —(142%) vy
= ()
p (1+y?) —xy —x

A - v
"

rotational flow independent of depth

Not just robots, animals know € through the vestibular system (inner ear)!

If we know angular velocity Q (e.g. from IMU gyroscope) we can:

(1) compute optical flow p from the images (e.g. with LK)

(2) then from £, estimate rotational flow p,,: at each pixel
independent of the scene.

(3) then get Prans = P — Prot

What can we do knowing the rotational and translational flows separately in this way?

Turns out, we can efficiently find the camera velocity IV (up to scale)
and also time to collision!



Translational Flow

Inverse “time to collision” of object Z plane with camera
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Finding FOE ~ V upto scale ambiguity

v
 We said earlier, FOE = [ﬁ ,—y] € R?

Z Z

Remember, in SfM too,
we only computed
translation to scale!

* In homogeneous P? coordinates, we can write FOE as V ~ [Vx, Wy, VZ]

* For point with known translational flow (we temporarily use the notation p
instead of Pirans), its “flow line” is: p; X (p; + p1) = py X v

* FOE is the intersection of all flow lines. So, (p; X p;)TV =0

* Given n = 2 points and flows, V lies on each flow line:

(pl X ]jl)T\ We know how to find null vectors!

» \T
p2 X p2) V =0 I/ « the smallest right singular vector of 4!

o

\Pn X pn)T )

A

So, given camera angular velocity £, we can compute camera velocity V (to scale)




Next, Finding Time-To-Collision (TTC)

Inverse “time to collision”

v
T — Focus of
Vy expansion (FOE)
Y—lv,

o= 45
ptrans y Z
Having computed the FOE, we can compute:

y

. V .
Get inverse TTC: 2 = [/Purans]|
Z |lp—FOE||

SN




Methods for Computing Motion from Flow

* Given flow (or other) pointwise correspondences between nearby images,
" Plus (), can solve for FOE~V with just 2 2D-2D correspondences
= Alone, we can solve for VV and ) with 5 correspondences (SfM)

=" Known 3D scene, we can solve for single-frame camera pose with 3 2D-
3D correspondences (PnP)



Motivation of SIFT

mlmage content is transformed into local feature
coordinates that are invariant to translation, rotation,
scale, and other imaging parameters

SIFT Features



What is SIFT (Scale Invariant Feature Transform)

* SIFT describes both a detector and descriptor




1. Multi-scale extrema detection

Second octave
[ ]

First octave

T T o e e
T T e e e

Gaussian Difference of Gaussian (DoG)



1. Multi-scale extrema detection

Scale-space extrema

Selected if
larger than all
26 neighbors
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2. Keypoint Localization

2nd order Taylor series approximation of DoG scale-space

. of " 17 0* f
f(x)=Ff e T2 X
X = {X,Y, 0}
Take the derivative and solve for extrema
N2 p—1 -
XKy, = d f ﬁ
ox? 0Ox

Additional tests to retain only strong features



3. Orientation assighment

For a keypoint, L is the Gaussian-smoothed
image with the closest scale,

m(xz,y) = \/(L(_.r +1,y)—Llx—-1.y))*+ (L(xz.y+1) — L(x,y — 1))

x-derivative y-derivative

O(x,y) =tan ' ((L(x,y+1) — L(x,y = 1))/(L(x + 1,y) — L(z — 1,y)))

Detection process returns

{x,y,0,0}

location scale orientation



4. Keypoint Descriptor

Image Gradients
(4 x 4 pixel per cell, 4 x 4 cells)

S

FT descriptor

(16 cells x 8 directions = 128 dims)

Gaussian weighting
(sigma = half width)
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Towards Multi-view Reconstruction

* Coming up next, extending SfM to > 2 views:
* The Incremental Approach, through SLAM / odometry. ORB-SLAM
=" The Global Approach i.e. Bundle Adjustment



Visual Odometry / SLAM

With figures and text from mathworks.com

https://www.mathworks.com/help/vision/ug/monocular-visual-simultaneous-localization-and-mapping.html



https://www.mathworks.com/help/vision/ug/monocular-visual-simultaneous-localization-and-mapping.html

“Visual Odometry”

What is Odometry ?
 Measuring how far you go by counting wheel rotations or steps.
 Known as “path integration” in biological perception.

 More general, integration of velocity or acceleration measurements:
inertial odometry.

What is Visual Odometry ?

* The process of incrementally estimating your position and orientation with
respect to an initial reference frame by tracking visual features, in an
unknown environment



Visual Odometry

Ground Truth Path Tracking

[

i



Two Years of Visual Odometry on the Mars

Visual odometry on Mars! Tploration Tovew

Mark Maimone, Yang Cheng, and Larry Matthies
Jet Propulsion Laboratory
17 September 2011 | 18 California Institute of Technology
Pasadena, CA TUSA

Qcience R

Abstract

NASA’s two Mars Exploration Rovers (MER) have successfully demonstrated
a robotic Visual Odometry capability on another world for the first time. This
provides each rover with accurate knowledge of its position, which allows it
to autonomously detect and compensate for any unforeseen slip encountered
during a drive. It has enabled the rovers to drive safely and more effectively in
highly-sloped and sandy terrains, and has resulted in increased mission science
return by reducing the number of days required to drive into interesting areas.
The MER Visual Odometry system comprises onboard software for comparing
steren pairs taken by the pointable mast-mounted 45 degree FOV Naviga-
tion cameras (NAVCAMSs). The system computes an update to the 6 Degree
Of Freedom rover pose (x, v, z, roll, pitch, yaw) by tracking the motion of
autonomously-selected terrain features between two pairs of 256x256 stereo
images. It has demonstrated good performance with high rates of successful
convergence (97% on Spirit, 95% on Opportunity), successfully detected slip
ratios as high as 125%, and measured changes as small as 2 mm, even while
driving on slopes as high as 31 degrees.

During the first two vears of operations, Visual Odometry evolved from an
“extra credit” capability into a critical vehicle safety system. In this paper
we describe our Visual Odometry algorithm, discuss several driving strategies
that rely on it (including Slip Checks, Keep-out Zones, and Wheel Dragging),
and summarize its results from the first two years of operations on Mars.

Curiosity at Gale Crater

1 Background

Keeping track of a vehicle's location is one of the most challenging aspects of planetary rover
ll AA '!'L'j operations. NASA’s Mars Exploration Rovers (MERs) typically have been commanded only
once per Martian solar day (or “sol”) using a pre-scheduled sequence of precise metrically
specified commands (e.g., “drive forward 2.34 meters, turn in place 0.3567 radians to the
right, drive to location X,Y, take color pictures of the terrain at location X,Y ,Z" (Biesiadecki
et al., 2005)), so having an accurate position estimate onboard during the execution of all
terrain-based commands has been of critical importance.




Why is Visionthe Right Tool for Odometry?

* Why not just simple wheel odometry like on a car?

=" On rugged terrain with slopes, rocks, slip etc. simple wheel odometry
like on a car doesn’t cut it.

= Unmanned Aerial Vehicles (UAVs) don’t have wheaels.

 Why not inertial measurement units (IMU)?
= Drift because of double integration over acceleration inputs.

* Why not GPS?
= Not accurate enough (up to a few meters off),
" Missing in many places (like on Mars, or in the deep ocean).



Back to Mars

The design goal for MER was to maintain a position estimate that drifted no more than
10% during a 100 meter drive. MER rover onboard position and attitude estimates were
updated at 8 Hz nearly every time the wheels or rover arm (Instrument Deployment Device,
or IDD) were actuated. Changes in attitude (roll, pitch, yaw) were measured using a Litton
LN-200 Inertial Measurement Unit (IMU) that has 3-axis accelerometers and 3-axis angular
rate sensors, and changes in position were estimated by combining attitude measurements
with encoder readings of how much the wheels turned (wheel odometry). Position estimates
derived solely from those sensors easily achieved the desired accuracy in benign terrains (Li
et al., 2005), but not on steep slopes or sandy terrain.

After moving a small amount on a slippery surface, the rovers were often commanded to
use camera-based Visual Odometry to correct any errors in the initial wheel odometry-based
estimate that occur when the wheels lose traction on large rocks and steep slopes. Our

Two Years of Visual Odometry on the Mars
Exploration Rovers

Mark Maimone, Yang Cheng, and Larry Matthies
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA USA
mark.maimone@jpl.nasa.gov



Do We Need New Methods For Visual Odometry?

Q: Didn’t we just discuss many methods for computing camera motion from
2 frames? Can we not just keep repeating this for every new pair of frames
and integrating the motions?

A: Indeed, a naive system could look like this, but this would lead to drift, i.e.,
accumulating errors over time.

Can avoid drift by maintaining some kind of consistency over longer
durations, rather than make independent measurements over pairs of
consecutive frames alone.

Emphasis on avoiding drift
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