
CIS 5800

Machine Perception

Instructor: Lingjie Liu
Lec 20: April 16, 2025

51Robot Image Credit: Viktoriya Sukhanova © 123RF.com

Q1.2 (a)
for the parallel lines on the ground plane

Otherwise, the answer is “False”

O

Ground Plane

AB

C

90o

90o

90o

90o

90o

H

Q1.2 (a)

Image

Online localization approaches
Input: a continuous visual observation stream, in real-time
• “VO” (visual odometry): mainly concerned with localizing and tracking the

robot w.r.t its start position in an unknown environment (so we do not have
a map of the environment), traditionally over small time windows (“short-
term”).

• “Visual SLAM” (simultaneous localization and mapping): jointly estimating
3D models of scenes and localizing the robot (camera) w.r.t. that scene,
maintaining long-term consistency.
 Short-term VO as defined above is often a module within Visual SLAM

We will focus on long-term VO through a widely used state-of-the-art
system from 2016: ORB-SLAM

Basic pipeline for long-term consistent VO
• Step 1: First do 2-view SfM between first 2 frames from video (or any other

method of estimating motion)
 Outputs:
 𝑅𝑅2,𝑇𝑇2 of 2nd camera w.r.t 1st
 A 3D map with the 3D positions 𝑿𝑿𝑖𝑖 of various points

• Step 2: For next frame 𝑘𝑘, identify 2D-2D correspondences with the previous frame.
 These yield 2D-3D correspondences between this frame and the current map!
 Then compute 𝑅𝑅𝑘𝑘 ,𝑇𝑇𝑘𝑘 with PnP. This is the VO output at time 𝑘𝑘.
 Thus, the map serves as a memory of all past frames, enforcing consistency and

reducing drift.
• Step 3: Improve triangulated 3D map 𝑿𝑿𝑖𝑖 (using the likely bigger “baseline”) and

expand it, using correspondences that aren’t yet in the map.
• Go back to Step 2 to process the next frame.

Good long-term visual odometry goes with map-building: SLAM

?

. . .

Note: Larger baselines => smaller triangulation error

Assuming some lack of precision in the 2D pixel locations of pixel
correspondences, larger baselines lead to less propagation of that
uncertainty into the 3D triangulated locations.

ORB-SLAM Overview
• Over the next few slides, we will walk through ORB-SLAM, a widely used

algorithm that was proposed in 2016.

• This is not an exhaustive description, and it is not intended for you to be
able to implement it from scratch.

• Instead, it is intended to give you a sense for what a modern SLAM system
looks like.

ORB-SLAM Demo

ORB-SLAM Pipeline

• Map Points: A list of 3-D points that represent the map of the environment reconstructed from the key
frames.

• “Key Frames:” A subset of video frames that contain cues for localization and tracking. Two consecutive key
frames should overlap but also have sufficient visual change/long enough baseline.

(Two View SfM)

Map Initialization In ORB-SLAM: Overview
• Wait for a good keyframe:
 Keep comparing between 1st frame (by default a keyframe) and kth

frame until none of the following happens:
Homographic frames (rank-deficient system for E matrix estimation):
 The scene is planar
 There is no translation

 Insufficient inliers for an estimate 𝐸𝐸 (e.g. when using RANSAC)
 Declare this as the next (2nd) keyframe

• Store keyframe features and poses computed with 2-view SfM
• Triangulate and initialize a 3D map with these localized points.
• (Optional) Refine initial reconstruction using “2-frame bundle adjustment”
Non-linear joint maximization of the consistency between camera poses

and 3D structures (more next class)

Example of a Detected Keyframe

Frame 1 Frame 26

An example from the default sequence in the ORB-SLAM package

Example of Map Initialization Through Triangulation

ORB-SLAM Pipeline
(Two View SfM)

Tracking in ORB-SLAM: overview
1. Appearance-based correspondences with previous keyframe: Extract ORB features

(like SIFT), match with previous keyframe features that are already incorporated into
the 3-D map.

2. PnP: Estimate the camera pose wrt previous keyframe with PnP + RANSAC. (similar to
one of the steps in map initialization)

3. Geometry-based correspondences with previous keyframe: Then given the camera
pose, project the (unmatched) map points observed by the previous keyframe into
the current frame and search for more feature correspondences. Not just appearance-
based correspondences now.

4. Refining PnP: Refine camera pose by performing a “pose-only bundle adjustment”.
(solving PnP non-linearly, details out of our scope)

5. This frame is a key frame if both of the following conditions are satisfied:
1. At least 20 frames have passed since the previous keyframe or the current frame

tracks fewer than 100 map points
2. Fewer than 90% of the map points tracked by the current frame are also tracked by

the reference key frame (i.e., there is significant change from the previous
keyframe)

red are parameters that you can set

(Keyframes should have overlap, but not be redundant.)

ORB-SLAM Pipeline
(Two View SfM)

Local Mapping

• Geometry-based correspondences with full map: Project “local” map
points visible in several “neighboring” keyframes into the current frame to
search for more feature correspondences:
 refine the camera pose even further
 triangulation of new correspondences to grow the map further

• Local bundle adjustment (non-linear SfM) to refine these and achieve
optimal reconstruction in the neighborhood of the current camera pose.

Lots of quality checking to avoid redundant keyframes (careful use of
memory), and low-quality correspondences.

ORB-SLAM Pipeline
(Two View SfM)

(Not always w.r.t very 1st frame)

• Covisibility Graph: A graph consisting of key frame as nodes. Two key frames are connected by an edge if they share
common map points. The weight of an edge is the number of shared map points.

• Recognition Database: A database used to recognize whether a place has been visited in the past. The database stores
the visual word-to-image mapping based on the input bag of features. It is used to search for an image that is visually
similar to a query image.

Loop Closure
• How do I know that I come back at a visited place?
 Place recognition: With deep learning, or other more classical

recognition techniques like “Bag of Visual Words”, find past keyframes
that look similar.
 If visual similarity candidate is found, run a geometric consistency

check: align the 3D points from current frame, and this keyframe, and
check that they follow a similarity transformation.

• If loop closure declared
 Run bundle adjustment (graph pose optimization g2o) to update all

poses in essential graph (A subgraph of covisibility graph containing only
edges with high weight, i.e. more shared map points).
Optimize for most consistent rotations and translations over the full

graph

Loop closure before graph pose optimization

NumNodes: 1661
NumLoopClosureEdges: 4615
NumEdges: 6275

Loop closure after graph pose optimization

Footnote 1: RANSAC is a workhorse throughout, makes a big difference!

Footnote 2: Visual Odometry >> IMU Odometry on Mars

3D Motion and Structure from
Multiple Views or Bundle Adjustment

Popular open-source software packages for multi-view SfM:
• Bundler
• COLMAP

Structure from Motion for Unordered Image Collections

Multiple views ⇒ Camera Poses + Scene 3D structure

.. and an example closer to us

3D reconstruction

Bundler

Urbanscape project 2006

Kostas Daniilidis

Hyun Soo Park

Let’s walk through a multi-view SfM pipeline till we get to BA

Hyun Soo Park

For a practical intro to SIFT correspondences, see: https://docs.opencv.org/4.x/dc/dc3/tutorial_py_matcher.html

https://docs.opencv.org/4.x/dc/dc3/tutorial_py_matcher.html

Hyun Soo Park

Equivalent to using the essential matrix E rather than F

Hyun Soo Park

Equivalent to finding R, T, as we discussed in class.

Hyun Soo Park

Hyun Soo Park

Hyun Soo Park

Hyun Soo Park

Significant reprojection errors
(mismatch between detection and reprojection)

Hyun Soo Park

Bundle Adjustment (BA) in SfM

Schonberger and Frahm, COLMAP, 2016. See also Worksheet on Canvas.

BA is often the final step in SfM, used to refine camera poses and 3D points
starting from some (pretty good) initialization.

It achieves this refinement through joint non-linear minimization of a
multi-view SfM objective function.

Camera 1

Camera 2

Camera 3
R1,t1

R2,t2

R3,t3

Bundle Adjustment Objective Function (Recap)
• So what is the error that bundle adjustment tries to minimize?
• “Reprojection error”: The sum of errors between 2D observations and the

“re-projected” 2D points.

argmin
𝑋𝑋𝑛𝑛 𝑛𝑛=1

𝑁𝑁 , 𝑅𝑅𝑓𝑓,𝑇𝑇𝑓𝑓 𝑓𝑓=1
𝐹𝐹

�
𝑖𝑖,𝑓𝑓

𝑑𝑑(𝒙𝒙𝑖𝑖𝑓𝑓, 𝐾𝐾𝑓𝑓[𝑅𝑅𝑓𝑓|𝑇𝑇𝑓𝑓]𝑿𝑿𝒏𝒏)

𝑑𝑑(.) is usually a simple 2D mean squared error after normalizing to
homogeneous coordinate w=1.

“Bundle Adjustment” (BA)
Bundle Adjustment is the process of jointly optimizing for camera poses and

object structure from some number of camera images.
• Q:Isn’t this what we did in 2-view SfM?
 A: No, we now want to handle >2 views

• Q: Isn’t this like what we did within ORB-SLAM by solving 2-view SfM, and
registering new views to the 3D map with PnP, and re-triangulating?
 A: No. This solves for the first 2 cameras, then for the third, and so on in

an ad hoc way. Recall that we used BA there for joint optimization to
make sure all the poses are consistent and minimize some overall error.
 E.g. Let pose of jth camera w.r.t ith be (𝑅𝑅𝑖𝑖→𝑗𝑗 ,𝑇𝑇𝑖𝑖→𝑗𝑗). We might have

computed (𝑅𝑅1→2,𝑇𝑇1→2) and (𝑅𝑅1→3,𝑇𝑇1→3). But what if: 𝑅𝑅1→3
≠ 𝑅𝑅2→3𝑅𝑅1→2 and 𝑇𝑇1→3 ≠ 𝑇𝑇1→2 + 𝑇𝑇2→3?

So Why Not Just Do Bundle Adjustment Directly?

• BA = direct non-linear minimization of the reprojection errors, which is a
good global objective for SfM.

• But:
 It requires good initializations, and
 It becomes computationally expensive as the number of cameras and

points grows

• Often used judiciously as a “refinement” step in any SfM system, after
initializing with other techniques. e.g. Incremental 2-view SfM as in ORB-
SLAM

How We Normally Use BA

• Start with an initial guess of 3D points and camera poses
• Project estimated 3D points through estimated camera matrices
• Compare locations of projected 3D points with measured 2D points to

compute the reprojection error
• Adjust everything jointly to minimize the reprojection error in the images.

Hyun Soo Park

Hyun Soo Park

Near-zero reprojection errors
(perfect alignment between detection and reprojection)

3D model from 𝐹𝐹 frames, 𝑁𝑁 points

+6(F-1) camera poses
+3N 3D point
-1 scale unknown

Best case, where
every point is visible
in every frame.

Homogeneous
equations
𝒙𝒙𝑓𝑓~ 𝑅𝑅 𝑇𝑇 𝑿𝑿

How many equations do we need?

N: point correspondences
F: frames

Example: how many unknowns and equations?
• E.g. F=1k images, and N=100k points in total
 6x1k + 3x100k -7 = ~306k unknowns!

• How many equations?
 If all points are visible everywhere, then:
 2NF = 2*1k*100k = 200M equations!
 If at least 306k of these equations are independent, we should be

able to solve for the unknowns.
Note: These are all “back of the envelope” calculations that hide lots of
assumptions. E.g. all points observed in all images etc. But still useful.

As a rule of thumb, a point should be visible in at least 4-6 views to enable
robustly finding its 3D pose (structure)

Expanding the reprojection error

argmin
𝑢𝑢={ 𝑋𝑋𝑛𝑛 𝑛𝑛=1

𝑁𝑁 , 𝑅𝑅𝑓𝑓,𝑇𝑇𝑓𝑓 𝑓𝑓=1
𝐹𝐹 }

||𝜖𝜖(𝑢𝑢)||22

argmin
𝑋𝑋𝑛𝑛 𝑛𝑛=1

𝑁𝑁 , 𝑅𝑅𝑓𝑓,𝑇𝑇𝑓𝑓 𝑓𝑓=1
𝐹𝐹

𝑑𝑑(𝒙𝒙𝑖𝑖𝑓𝑓 , 𝐾𝐾𝑓𝑓[𝑅𝑅𝑓𝑓|𝑇𝑇𝑓𝑓]𝑿𝑿𝒏𝒏)

So, BA is a non-linear least squares problem. How to solve?

Also ways to introduce
uncertainties here, but

we skip this.

The usual thing we do for
overdetermined systems …

least squares

Side Notes: Suppl. Reading
Materials

A Mini-Course on Optimization

First-order optimization methods: gradient descent

To minimize a differentiable function 𝑓𝑓(𝑥𝑥) over parameters 𝑥𝑥

1. Start from some initialization 𝑥𝑥

2. Compute the gradient 𝑔𝑔 = 𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥

(𝑥𝑥), the direction of local descent

3. Descend along that direction by some step-length 𝛼𝛼 i.e. 𝛿𝛿𝑥𝑥 = −𝛼𝛼𝑔𝑔
4. Set 𝑥𝑥 ← 𝑥𝑥 + 𝛿𝛿𝑥𝑥, then go back to step 2 and repeat

Q: How to set step-length 𝛼𝛼?
A: Often set to a small constant. Many other options, like Adaptive Gradients.

Gradient Descent Illustration

133

ℒ(𝜽𝜽0,𝜽𝜽1)

𝜽𝜽0
𝜽𝜽1

Figure by Andrew Ng

Gradient Descent Illustration

https://sebastianraschka.com/faq/docs/gradient-optimization.html

Slow convergence due to small gradients near the minimum.

https://sebastianraschka.com/faq/docs/gradient-optimization.html

Second-order optimization: a bird’s eye view of the strategy

To minimize a (twice-) differentiable function 𝑓𝑓(𝑥𝑥) over parameters 𝑥𝑥
• Start with an initial estimate for 𝑥𝑥
• Locally approximate 𝑓𝑓(𝑥𝑥) using e.g. a second-order Taylor expansion.

𝑓𝑓 𝑥𝑥 + 𝛿𝛿𝑥𝑥 ≈ 𝑓𝑓 𝑥𝑥 + 𝑔𝑔𝑇𝑇𝛿𝛿𝑥𝑥 +
1
2
𝛿𝛿𝑥𝑥𝑇𝑇𝐻𝐻𝛿𝛿𝑥𝑥,

where: 𝑔𝑔 = 𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥

𝑥𝑥 , and 𝐻𝐻 = 𝑑𝑑2𝑓𝑓
𝑑𝑑𝑥𝑥2

(𝑥𝑥)
• Try to find a displacement 𝑥𝑥 → 𝑥𝑥 + 𝛿𝛿𝑥𝑥 that locally minimizes the quadratic

local approximation of 𝑓𝑓(𝑥𝑥)
• This does not usually give the exact minimum of 𝑓𝑓(𝑥𝑥), but with luck it will

improve over the initial estimate, and allow us to iterate to convergence.

Hessian

Newton/Newton-Raphson’s method (second-order)
• Locally approximate 𝑓𝑓(𝑥𝑥) using e.g. a Taylor expansion.

𝑓𝑓 𝑥𝑥 + 𝛿𝛿𝑥𝑥 ≈ 𝑓𝑓 𝑥𝑥 + 𝑔𝑔𝑇𝑇𝛿𝛿𝑥𝑥 +
1
2
𝛿𝛿𝑥𝑥𝑇𝑇𝐻𝐻𝛿𝛿𝑥𝑥,

where: 𝑔𝑔 = 𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥

𝑥𝑥 , and 𝐻𝐻 = 𝑑𝑑2𝑓𝑓
𝑑𝑑𝑥𝑥2

(𝑥𝑥). Assume the “Hessian” 𝐻𝐻 is positive
semi-definite for now, so that you can find the minimum.

𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥

𝑥𝑥 + 𝛿𝛿𝑥𝑥 ≈ 𝐻𝐻𝛿𝛿𝑥𝑥 + 𝑔𝑔 = 0 ⇒

𝛿𝛿𝑥𝑥 = −𝐻𝐻−1𝑔𝑔
Iterating over this update = “Newton’s method”

The most basic “second-order” non-linear optimization method
(Asymptotic quadratic convergence = error approx. squared at each iteration)

Goes directly to the
minimum of the local

quadratic approximation of 𝑓𝑓

Gradient Descent Vs. Newton’s Method

Kilian Weinberger

Fits a paraboloid locally and
jumps straight to its minimum.

Faster!

Red – Newton’s Method
Green - gradient descent iteration.

Gradient Descent Vs. Newton’s Method

Wikipedia

Newton's method uses curvature information (i.e. the second derivative) to take a more direct route.

When it works, Newton’s
method often finds faster,
more direct routes!

Problem: Computing the Hessian 𝐻𝐻 = 𝑑𝑑2𝑓𝑓
𝑑𝑑𝑥𝑥2

 is expensive!

Gauss-Newton Method for Least Squares part 1/2
An approximate version of Newton’s method for least squares:

argmin
𝑢𝑢= 𝑋𝑋𝑛𝑛 𝑛𝑛=1

𝑁𝑁 , 𝑅𝑅𝑓𝑓,𝑇𝑇𝑓𝑓 𝑓𝑓=1
𝐹𝐹

𝑓𝑓 𝑢𝑢 = ||𝜖𝜖(𝑢𝑢)||22

Gradient 𝑔𝑔 = ∇u𝑓𝑓 = 2∑𝑖𝑖 𝜖𝜖𝑖𝑖 𝑢𝑢 ∇u𝜖𝜖𝑖𝑖 𝑢𝑢 = 2 𝐽𝐽 𝑢𝑢 𝑇𝑇𝝐𝝐(𝑢𝑢),

Where 𝐽𝐽𝑖𝑖𝑗𝑗 = 𝜕𝜕𝜖𝜖𝑖𝑖
𝜕𝜕𝑢𝑢𝑗𝑗

Hessian reads (computing the gradient of 𝑔𝑔):

𝐻𝐻 𝑢𝑢 = 2�
𝑖𝑖

∇u𝜖𝜖𝑖𝑖 𝑢𝑢 ∇u𝜖𝜖𝑖𝑖 𝑢𝑢 + 𝜖𝜖𝑖𝑖 𝑢𝑢
𝜕𝜕2𝜖𝜖𝑖𝑖
𝜕𝜕2𝑢𝑢2

= 2𝐽𝐽 𝑢𝑢 𝑇𝑇𝐽𝐽 𝑢𝑢 + 2�
𝑖𝑖

𝜖𝜖𝑖𝑖 𝑢𝑢
𝜕𝜕2𝜖𝜖𝑖𝑖
𝜕𝜕𝑢𝑢2

Ignoring the hard-to-compute quadratic terms, 𝐻𝐻 𝑢𝑢 ≈ 2 𝐽𝐽 𝑢𝑢 𝑇𝑇𝐽𝐽 𝑢𝑢
Saves computation, and is approx. true when error 𝜖𝜖𝑖𝑖 is small, or the function is ~
linear.

A

B

Jacobian

Gauss-Newton Method for Least Squares part 2/2

We saw earlier, Newton’s update for general non-linear optimization:
𝛿𝛿𝑢𝑢 = −𝐻𝐻−1𝑔𝑔

For least squares problems argmin
𝑢𝑢

 𝑓𝑓 𝑢𝑢 = ||𝜖𝜖(𝑢𝑢)||22, we have seen:

• By A on the last slide, 𝑔𝑔 = 2 𝐽𝐽 𝑢𝑢 𝑇𝑇𝜖𝜖(𝑢𝑢)
• By B on the last slide, 𝐻𝐻(𝑢𝑢) ≈ 2𝐽𝐽 𝑢𝑢 𝑇𝑇𝐽𝐽 𝑢𝑢

Directly leads to Gauss-Newton update, often called “Normal Equation”:
𝛿𝛿𝑢𝑢 = − 𝐽𝐽 𝑢𝑢 𝑇𝑇𝐽𝐽 𝑢𝑢 −1𝐽𝐽 𝑢𝑢 𝑇𝑇𝜖𝜖(𝑢𝑢)

Q: Have you seen an expression like this before when solving linear equations?
Hint: If you were minimizing 𝐴𝐴𝑥𝑥 − 𝑏𝑏 2

2
, what would the solution be?

Gauss-Newton for the BA Least Squares Problem?

Recall that the BA problem looked like:
argmin

𝑢𝑢= 𝑋𝑋𝑛𝑛 𝑛𝑛=1
𝑁𝑁 , 𝑅𝑅𝑓𝑓,𝑇𝑇𝑓𝑓 𝑓𝑓=1

𝐹𝐹
𝑓𝑓 𝑢𝑢 = ||𝜖𝜖(𝑢𝑢)||22

So the new update at each iteration would look like:
𝛿𝛿𝑢𝑢 = − 𝐽𝐽𝑇𝑇𝐽𝐽 −1𝐽𝐽𝑇𝑇𝜖𝜖

(𝐽𝐽 and 𝜖𝜖 are both functions of the parameters 𝑢𝑢)

Computational Nightmares!
We’ve decided we want to do something like:

𝛿𝛿𝑥𝑥 = − 𝐽𝐽𝑇𝑇𝐽𝐽 −1𝐽𝐽𝑇𝑇𝜖𝜖

What is the size of 𝐽𝐽 = 𝜕𝜕𝜖𝜖𝑖𝑖
𝜕𝜕𝑢𝑢𝑗𝑗 𝑖𝑖𝑗𝑗

?

Recall:
• The dimension of the reprojection error vector 𝝐𝝐 is 2NF (F frames, N points

in each frame, 2 dimensions per point in the reprojection error vector)
• The number of unknown parameters 𝒖𝒖 is M = 6𝐹𝐹 + 3𝑁𝑁 − 7

The size of 𝐽𝐽 is 2𝑁𝑁𝐹𝐹 × 𝑀𝑀. (e.g. 200e6 x 306e3)
𝐽𝐽𝑇𝑇𝐽𝐽 is 𝑀𝑀 × 𝑀𝑀 e.g. (306e3 x 306e3).

For general matrices, inverse scales as 𝐹𝐹 𝑀𝑀3 ≈ 2.8𝑒𝑒16.
This is all bad news!

BA is all about linear algebra implementation tricks!

• The modern bundle adjustment literature is all about how to deal with this
massive computational complexity cleverly.

• Some useful properties to simplify huge linear equation systems:
 Try to avoid inverses of large general matrices to the extent possible,

and instead reduce to “simpler” matrix inverses.
 Block diagonal matrices can be inverted block-by-block.

 Try to set up equations 𝐴𝐴𝒙𝒙 = 𝒃𝒃 with triangular matrices 𝐴𝐴, much easier
to solve. (“forward/backward substitutions”)
 Avoid matrix multiplications of large general matrices:
 Sparse matrices, including non-diagonal ones, are much easier to

multiply

	CIS 5800��Machine Perception
	Administrivia
	Recap Two-view Reconstruction
	Two Calibrated Views of the Same 3D Scene
	PnP vs. 2-View Structure from Motion (SfM)
	“Epipolar Constraints” Between Two Views of a Scene
	The Essential Matrix 𝐸
	Epipolar Lines in Essential Matrix Notation
	Epipolar Lines Constrain Point Correspondences!
	8-Point Algorithm
	After solving for 𝐸, not Quite Done Yet!
	Constructing Valid Essential Matrices and Decomposing Them
	Cases that can’t do 2-view SfM
	The full two-view 8-point algorithm
	The full two-view 8-point algorithm
	Correspondences are not clean!
	Back to basics: a single line fitting problem
	Approach #1: Hough Transform
	Approach #2: RANSAC in the line fitting setting
	One Approach to Get Correspondences: Optical Flow
	Lucas-Kanade Optical Flow
	Perhaps The Most Important Assumption: Invertibility
	“Interesting” Patch (Rank 2 patch)
	Optical Flow: Translational Flow + Rotational Flow
	Rotational Flow
	Translational Flow
	Finding FOE∼𝑽 upto scale ambiguity
	Next, Finding Time-To-Collision (TTC)
	Methods for Computing Motion from Flow
	Motivation of SIFT
	What is SIFT (Scale Invariant Feature Transform)
	1. Multi-scale extrema detection
	1. Multi-scale extrema detection
	2. Keypoint Localization
	3. Orientation assignment
	4. Keypoint Descriptor
	Towards Multi-view Reconstruction
	Visual Odometry / SLAM
	“Visual Odometry”
	Visual Odometry
	Visual odometry on Mars!
	Why is Vision the Right Tool for Odometry?
	Back to Mars
	Do We Need New Methods For Visual Odometry?
	CIS 5800��Machine Perception
	Q1.2 (a)
	Q1.2 (a)
	Online localization approaches
	Basic pipeline for long-term consistent VO
	Note: Larger baselines => smaller triangulation error
	ORB-SLAM Overview
	ORB-SLAM Demo
	ORB-SLAM Pipeline
	Map Initialization In ORB-SLAM: Overview
	Example of a Detected Keyframe
	Example of Map Initialization Through Triangulation
	ORB-SLAM Pipeline
	Tracking in ORB-SLAM: overview
	ORB-SLAM Pipeline
	Local Mapping
	ORB-SLAM Pipeline
	Loop Closure
	Loop closure before graph pose optimization
	Loop closure after graph pose optimization
	Slide Number 75
	Footnote 1: RANSAC is a workhorse throughout, makes a big difference!
	Footnote 2: Visual Odometry >> IMU Odometry on Mars
	Slide Number 78
	3D Motion and Structure from�Multiple Views or Bundle Adjustment
	Structure from Motion for Unordered Image Collections
	�Multiple views ⇒ Camera Poses + Scene 3D structure
	.. and an example closer to us
	3D reconstruction
	Urbanscape project 2006
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Bundle Adjustment (BA) in SfM
	Bundle Adjustment Objective Function (Recap)
	“Bundle Adjustment” (BA)
	So Why Not Just Do Bundle Adjustment Directly?
	How We Normally Use BA
	Slide Number 116
	Slide Number 117
	Slide Number 120
	3D model from 𝐹 frames, 𝑁 points
	How many equations do we need?
	Example: how many unknowns and equations?
	Expanding the reprojection error
	Slide Number 125
	Side Notes: Suppl. Reading Materials
	A Mini-Course on Optimization
	First-order optimization methods: gradient descent
	Gradient Descent Illustration
	Gradient Descent Illustration
	Second-order optimization: a bird’s eye view of the strategy
	Newton/Newton-Raphson’s method (second-order)
	Gradient Descent Vs. Newton’s Method
	Gradient Descent Vs. Newton’s Method
	Gauss-Newton Method for Least Squares part 1/2
	Gauss-Newton Method for Least Squares part 2/2
	Slide Number 141
	Gauss-Newton for the BA Least Squares Problem?
	Computational Nightmares!
	BA is all about linear algebra implementation tricks!
	Slide Number 145
	CIS 5800��Machine Perception
	Administrivia: Plan for the rest of the semester
	Administrivia
	Slide Number 149
	Recap:
	Recap: Linear Algebra Tricks for BA
	Slide Number 152
	Sparsity in Cameras – 3D points connectivity
	Separating the unknowns to see structure
	Camera -> 3D point connectivity graph
	The Structure of the Jacobian 𝐽
	The Structure of 𝐽 𝑇 𝐽
	Exploiting structure to make BA easier
	Exploiting structure to make BA easier
	Complexity reduced!
	Slide Number 165
	Note
	Afternotes: Accounting for uncertainties in BA?
	Afternotes: “Can’t we just deep-learn Bundle Adjustment?”
	Afternotes: Speed-up using advances in hardware
	Slide Number 175
	Combining gradient descent and Newton’s method: “Damped Newton”
	Levenberg Marquardt (LM)
	Slide Number 178
	The original structure from motion paper from 1979!
	Some widely used solvers
	Onwards from BA: Can Further Improve Structure
	Slide Number 186
	Stereopsis For Dense Reconstruction!
	Monocular depth cues
	Stereogram
	Painting Stereographs: “Solid Writing”
	Slide Number 192
	Anaglyphs
	Anaglyphs and 3D movies
	Autostereogram
	Autostereogram Music Video! (credit: Young Rival)
	Slide Number 205
	Dense Reconstruction from Known Cameras (e.g. after SfM)
	V0: Frontoparallel cameras + correspondences known
	Basic Parallel Stereo Derivations
	Basic Parallel Stereo Derivations
	Examples
	Slide Number 218
	Correspondences For Stereo?
	Putting this in context
	Correspondences for frontoparallel cameras
	Slide Number 224
	Correspondences for parallel stereo
	Stereo Correspondence
	CIS 5800��Machine Perception
	Administrivia
	Slide Number 230
	(Recap) Our quest for dense correspondences
	Our strategy
	Slide Number 233
	Recall: parallel camera correspondences lie on a scan line.
	Search range of disparity
	Components of Stereo Correspondence Matching
	Matching Windows
	Sum of Squared Differences (SSD) Over the Window
	Matching Windows with SSD + Winner-Take-All
	Slide Number 244
	Stereo Rectification
	Stereo Rectification
	Slide Number 247
	Why Rectify?
	Key Idea
	Slide Number 253
	Slide Number 254
	Slide Number 255
	Building 𝑹 𝒓𝒆𝒄𝒕 by setting epipole to ∞
	Formula for “smallest rotation” 𝑹 𝒓𝒆𝒄𝒕 �(minimum distortion homography)
	Slide Number 259
	Slide Number 260
	Stereo Rectification Algorithm Pseudocode
	After Rectification
	Slide Number 266
	Dense Disparity / Depth Maps
	View Interpolation
	Multi-View Stereo
	Multi-view Stereo
	Multi-view Stereo Camera Systems
	Multi-view Stereo
	Dense maps of cities with MVS
	Dense models of historical artifacts with MVS
	Slide Number 278
	Extending 2-view correspondences to multiple views
	Exploiting multiple neighbors
	Pick Neighbors Based On Baseline?
	The Effect of Baseline on Depth Estimation
	Different Baselines Have Different Problems
	Simple Solution: Combine Them All!
	Multiple Baseline Sum of SSD errors
	Multiple Baseline Sum of SSD errors
	Multiple Baseline Sum of SSD errors
	Multiple-Baseline Multi-View Stereo Results
	Multiple-Baseline Multi-View Stereo Summary
	Slide Number 295
	Plane-Sweep Stereo
	Plane-Sweep Stereo
	Plane-Sweep Stereo
	Plane-Sweep Stereo
	Plane-Sweep Stereo
	How to backproject onto plane 𝒁= 𝒛 𝟎 ?
	Plane-Sweep Stereo
	Another example
	Cost Volumes -> Depth Maps
	Fusing multiple depth maps
	CIS 5800��Machine Perception
	Administrivia
	Midterm 2 announcements post on EdSTEM
	Slide Number 317
	Systems that could produce camera pose inputs for MVS
	Slide Number 319
	Plane-Sweep Stereo
	Plane-Sweep Stereo
	Plane-Sweep Stereo
	Plane-Sweep Stereo
	Plane-Sweep Stereo
	Another example
	Cost Volumes -> Depth Maps
	Note on Visibility in MVS
	Slide Number 330
	Window Matching for Stereo Correspondence Finding
	Popular window matching scores beyond SSD
	NCC Injects Some Invariance
	False Positives in NCC
	Slide Number 339
	Components of Stereo Correspondence Matching
	Winner-Take-All is Fragile
	Left-Right Consistency Checking
	Winner-Take-All is Fragile
	Solutions: Constrain the correspondences!
	Occlusions mess up scanlines!
	Ordering Constraint Illustration
	Ordering Constraint Illustration
	Ordering Constraint Illustration
	Overview: Stereo Matching with Dynamic Programming
	Ordering Constraint is Sometimes Wrong!
	Slide Number 352
	Beyond depth maps and point clouds
	Beyond depth maps and point clouds
	CIS 5800��Machine Perception
	Slide Number 359
	The Ground We’ve Covered: 1-View Geometry
	The Ground We’ve Covered: 2-View Geometry
	The Ground We’ve Covered: Multi-View Geometry
	Another view of what we’ve done
	An example of a combined system (slide 1)
	Slide Number 365
	What Info can be Extracted from Images?
	What Info can be Extracted from Images?
	What Info can be Extracted from Images?
	ML in Computer Vision
	What Should Good Visual Features Do?
	What Should Good Visual Features Do?
	Most Feature Extraction Frameworks Pre-2012
	Machine Learning for Semantic Computer Vision
	“Deep” Learning
	Some sample applications of semantic vision
	Some sample applications of semantic vision
	Game playing from visual inputs
	Generating art
	Where to learn more about ML and semantic vision?
	Slide Number 380
	There is lots of ML in geometric vision too!
	Slide Number 382
	Slide Number 383
	Some more practice questions
	Slide Number 385
	Slide Number 389
	The Rest of the Multi-View Stereo Pipeline
	Visibility Estimation
	Finding Clusters of Images to Scale MVS
	View Clusters in Large-Scale MVS
	Iterative Visibility Estimation
	Slide Number 396
	The Rest of the Multi-View Stereo Pipeline
	Beyond depth maps and point clouds
	Beyond depth maps and point clouds
	Slide Number 400
	Light-fields
	Slide Number 402
	Slide Number 403
	Slide Number 404
	Slide Number 405
	Slide Number 406
	Slide Number 407
	Slide Number 408
	Slide Number 409
	Slide Number 410
	Slide Number 411
	Slide Number 412
	Slide Number 413
	Slide Number 414
	Slide Number 415
	Slide Number 416
	Slide Number 417
	Slide Number 418
	Slide Number 419
	Slide Number 420
	Slide Number 421
	Slide Number 422
	Slide Number 423
	Slide Number 424
	Slide Number 425
	Slide Number 426
	Slide Number 427
	Slide Number 428
	Slide Number 429
	Neural Radiance Fields
	Computer vision as inverse rendering
	Computer vision as inverse rendering
	Neural Radiance Fields (NeRF) as an approach to inverse rendering
	Deep learning for 3D reconstruction
	NeRF and related methods – Key ideas
	Slide Number 436
	Slide Number 437
	Slide Number 438
	Slide Number 439
	Slide Number 440
	Slide Number 441
	Slide Number 442
	Slide Number 443
	Slide Number 444
	Slide Number 445
	Neural prediction of scene representations
	Stereo Magnification: Learning View Synthesis using Multiplane ImagesTinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, Noah SnavelySIGGRAPH 2018
	Multiplane Camera (1937)
	Multiplane Images (MPIs)
	View Synthesis using Multiplane Images
	View Synthesis using Multiplane Images
	Slide Number 452
	Slide Number 453
	Properties of Multiplane Images
	Learning Multiplane Images
	Learning Multiplane Images
	Common architecture for mapping images to images: UNet architecture
	Training Data
	Slide Number 459
	RealEstate10K dataset
	Sampling Training Examples
	Sampling Training Examples
	Results
	Slide Number 464
	Slide Number 465
	Slide Number 466
	Slide Number 467
	Slide Number 468
	Slide Number 469
	Slide Number 471
	Slide Number 472
	Extrapolating Cellphone Footage
	Slide Number 474
	Slide Number 475
	Computer vision as inverse rendering
	Paradigm 1: “Feedforward” inverse rendering
	Paradigm 1: “Feedforward” inverse rendering
	Paradigm 2: “Render-and-compare”
	Paradigm 2: “Render-and-compare”
	What representation to use?
	Slide Number 482
	NeRF == Differentiable Rendering with a Neural Volumetric Representation
	Slide Number 484
	Neural Volumetric Rendering
	Neural Volumetric Rendering
	Neural Volumetric Rendering
	Neural Volumetric Rendering
	NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis�ECCV 2020
	Slide Number 490
	NeRF Overview
	NeRF Overview
	Traditional volumetric rendering
	Traditional volumetric rendering
	Traditional volumetric rendering
	Volumetric formulation for NeRF
	Volumetric formulation for NeRF
	Volumetric formulation for NeRF
	Volume rendering estimation: integrating color along a ray
	Volume rendering estimation: integrating color along a ray
	Volume rendering estimation: integrating color along a ray
	NeRF Overview
	Toy problem: storing 2D image data
	Toy problem: storing 2D image data
	Recall the TensorFlow playground
	Naive approach fails!
	Problem:
	Solution:
	Example mapping: “positional encoding”
	Positional encoding
	Problem solved!
	Sometimes a better input encoding is all you need
	NeRF Overview
	NeRF = volume rendering + coordinate-based network
	How do we store the values of 𝐜,𝜎 at each point in space
	How do we store the values of 𝐜,𝜎 at each point in space
	How do we store the values of 𝐜,𝜎 at each point in space
	How do we store the values of 𝐜,𝜎 at each point in space
	How do we store the values of 𝐜,𝜎 at each point in space
	How do we store the values of 𝐜,𝜎 at each point in space
	How do we store the values of 𝐜,𝜎 at each point in space
	How do we store the values of 𝐜,𝜎 at each point in space
	Extension: view-dependent field
	Putting it all together
	Train network using gradient descent to reproduce all input views of scene
	Results
	Slide Number 527
	NeRF encodes convincing view-dependent effects using directional dependence
	NeRF encodes convincing view-dependent effects using directional dependence
	NeRF encodes detailed scene geometry with occlusion effects
	NeRF encodes detailed scene geometry with occlusion effects
	NeRF encodes detailed scene geometry
	Summary
	NeRF in the Wild (NeRF-W)

