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Q1.2 (a)
for the parallel lines on the ground plane 

Otherwise, the answer is “False”
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Online localization approaches
Input: a continuous visual observation stream, in real-time
• “VO” (visual odometry): mainly concerned with localizing and tracking the 

robot w.r.t its start position in an unknown environment (so we do not have 
a map of the environment), traditionally over small time windows (“short-
term”). 

• “Visual SLAM” (simultaneous localization and mapping): jointly estimating 
3D models of scenes and localizing the robot (camera) w.r.t. that scene, 
maintaining long-term consistency.
 Short-term VO as defined above is often a module within Visual SLAM

We will focus on long-term VO through a widely used state-of-the-art 
system from 2016: ORB-SLAM



Basic pipeline for long-term consistent VO
• Step 1: First do 2-view SfM between first 2 frames from video (or any other 

method of estimating motion)
 Outputs: 
 𝑅𝑅2,𝑇𝑇2 of 2nd camera w.r.t 1st 
 A 3D map with the 3D positions 𝑿𝑿𝑖𝑖 of various points

• Step 2: For next frame 𝑘𝑘, identify 2D-2D correspondences with the previous frame.
 These yield 2D-3D correspondences between this frame and the current map!
 Then compute 𝑅𝑅𝑘𝑘 ,𝑇𝑇𝑘𝑘 with PnP. This is the VO output at time 𝑘𝑘.
 Thus, the map serves as a memory of all past frames, enforcing consistency and 

reducing drift.
• Step 3: Improve triangulated 3D map 𝑿𝑿𝑖𝑖 (using the likely bigger “baseline”) and 

expand it, using correspondences that aren’t yet in the map.
• Go back to Step 2 to process the next frame.

Good long-term visual odometry goes with map-building: SLAM

?



. . . 

Note: Larger baselines => smaller triangulation error

Assuming some lack of precision in the 2D pixel locations of pixel 
correspondences, larger baselines lead to less propagation of that 
uncertainty into the 3D triangulated locations.



ORB-SLAM Overview
• Over the next few slides, we will walk through ORB-SLAM, a widely used 

algorithm that was proposed in 2016. 

• This is not an exhaustive description, and it is not intended for you to be 
able to implement it from scratch. 

• Instead, it is intended to give you a sense for what a modern SLAM system 
looks like.



ORB-SLAM Demo



ORB-SLAM Pipeline

• Map Points: A list of 3-D points that represent the map of the environment reconstructed from the key 
frames.

• “Key Frames:” A subset of video frames that contain cues for localization and tracking. Two consecutive key 
frames should overlap but also have sufficient visual change/long enough baseline.

(Two View SfM)



Map Initialization In ORB-SLAM: Overview
• Wait for a good keyframe:
 Keep comparing between 1st frame (by default a keyframe) and kth  

frame until none of the following happens:
Homographic frames (rank-deficient system for E matrix estimation):
 The scene is planar
 There is no translation

 Insufficient inliers for an estimate 𝐸𝐸 (e.g. when using RANSAC)
 Declare this as the next (2nd) keyframe

• Store keyframe features and poses computed with 2-view SfM
• Triangulate and initialize a 3D map with these localized points.
• (Optional) Refine initial reconstruction using “2-frame bundle adjustment”
Non-linear joint maximization of the consistency between camera poses 

and 3D structures (more next class)



Example of a Detected Keyframe

Frame 1 Frame 26

An example from the default sequence in the ORB-SLAM package



Example of Map Initialization Through Triangulation



ORB-SLAM Pipeline
(Two View SfM)



Tracking in ORB-SLAM: overview
1. Appearance-based correspondences with previous keyframe: Extract ORB features 

(like SIFT), match with previous keyframe features that are already incorporated into 
the 3-D map.

2. PnP: Estimate the camera pose wrt previous keyframe with PnP + RANSAC. (similar to 
one of the steps in map initialization)

3. Geometry-based correspondences with previous keyframe: Then given the camera 
pose, project the (unmatched) map points observed by the previous keyframe into 
the current frame and search for more feature correspondences. Not just appearance-
based correspondences now. 

4. Refining PnP: Refine camera pose by performing a “pose-only bundle adjustment”. 
(solving PnP non-linearly, details out of our scope)

5. This frame is a key frame if both of the following conditions are satisfied:
1.  At least 20 frames have passed since the previous keyframe or the current frame 

tracks fewer than 100 map points  
2. Fewer than 90% of the map points tracked by the current frame are also tracked by 

the reference key frame (i.e., there is significant change from the previous 
keyframe)

red are parameters that you can set

(Keyframes should have overlap, but not be redundant.)



ORB-SLAM Pipeline
(Two View SfM)



Local Mapping

• Geometry-based correspondences with full map: Project “local” map 
points visible in several “neighboring” keyframes into the current frame to 
search for more feature correspondences:
 refine the camera pose even further
 triangulation of new correspondences to grow the map further 

• Local bundle adjustment (non-linear SfM) to refine these and achieve 
optimal reconstruction in the neighborhood of the current camera pose.

Lots of quality checking to avoid redundant keyframes (careful use of 
memory), and low-quality correspondences. 



ORB-SLAM Pipeline
(Two View SfM)

(Not always w.r.t very 1st frame)

• Covisibility Graph: A graph consisting of key frame as nodes. Two key frames are connected by an edge if they share 
common map points. The weight of an edge is the number of shared map points.

• Recognition Database: A database used to recognize whether a place has been visited in the past. The database stores 
the visual word-to-image mapping based on the input bag of features. It is used to search for an image that is visually 
similar to a query image.



Loop Closure
• How do I know that I come back at a visited place?
 Place recognition: With deep learning, or other more classical 

recognition techniques like “Bag of Visual Words”, find past keyframes 
that look similar.
 If visual similarity candidate is found, run a geometric consistency 

check: align the 3D points from current frame, and this keyframe, and 
check that they follow a similarity transformation. 

• If loop closure declared
 Run bundle adjustment (graph pose optimization g2o) to update all 

poses in essential graph (A subgraph of covisibility graph containing only 
edges with high weight, i.e. more shared map points).
Optimize for most consistent rotations and translations over the full 

graph



Loop closure before graph pose optimization

NumNodes: 1661
NumLoopClosureEdges: 4615
NumEdges: 6275



Loop closure after graph pose optimization





Footnote 1: RANSAC is a workhorse throughout, makes a big difference!



Footnote 2: Visual Odometry >> IMU Odometry on Mars





3D Motion and Structure from
Multiple Views or Bundle Adjustment



Popular open-source software packages for multi-view SfM:
• Bundler
• COLMAP

Structure from Motion for Unordered Image Collections



Multiple views ⇒ Camera Poses + Scene 3D structure



.. and an example closer to us



3D reconstruction

Bundler



Urbanscape project 2006

Kostas Daniilidis



Hyun Soo Park

Let’s walk through a multi-view SfM pipeline till we get to BA



Hyun Soo Park

For a practical intro to SIFT correspondences, see:  https://docs.opencv.org/4.x/dc/dc3/tutorial_py_matcher.html

https://docs.opencv.org/4.x/dc/dc3/tutorial_py_matcher.html


Hyun Soo Park

Equivalent to using the essential matrix E rather than F



Hyun Soo Park

Equivalent to finding R, T, as we discussed in class.



Hyun Soo Park



Hyun Soo Park



Hyun Soo Park



Hyun Soo Park

Significant reprojection errors
(mismatch between detection and reprojection)



Hyun Soo Park



Bundle Adjustment (BA) in SfM

Schonberger and Frahm, COLMAP, 2016. See also Worksheet on Canvas.

BA is often the final step in SfM, used to refine camera poses and 3D points 
starting from some (pretty good) initialization.

It achieves this refinement through joint non-linear minimization of a 
multi-view SfM objective function.



Camera 1

Camera 2

Camera 3
R1,t1

R2,t2

R3,t3

Bundle Adjustment Objective Function (Recap)
• So what is the error that bundle adjustment tries to minimize?
• “Reprojection error”: The sum of errors between 2D observations and the 

“re-projected” 2D points. 

argmin
𝑋𝑋𝑛𝑛 𝑛𝑛=1

𝑁𝑁  , 𝑅𝑅𝑓𝑓,𝑇𝑇𝑓𝑓 𝑓𝑓=1
𝐹𝐹

�
𝑖𝑖,𝑓𝑓

𝑑𝑑(𝒙𝒙𝑖𝑖𝑓𝑓, 𝐾𝐾𝑓𝑓[𝑅𝑅𝑓𝑓|𝑇𝑇𝑓𝑓]𝑿𝑿𝒏𝒏)

𝑑𝑑(. ) is usually a simple 2D mean squared error after normalizing to 
homogeneous coordinate w=1.



“Bundle Adjustment” (BA)
Bundle Adjustment is the process of jointly optimizing for camera poses and 

object structure from some number of camera images.
• Q:Isn’t this what we did in 2-view SfM?
 A: No, we now want to handle >2 views

• Q: Isn’t this like what we did within ORB-SLAM by solving 2-view SfM, and 
registering new views to the 3D map with PnP, and re-triangulating?
 A: No. This solves for the first 2 cameras, then for the third, and so on in 

an ad hoc way. Recall that we used BA there for joint optimization to 
make sure all the poses are consistent and minimize some overall error.
 E.g. Let pose of jth camera w.r.t ith be (𝑅𝑅𝑖𝑖→𝑗𝑗 ,𝑇𝑇𝑖𝑖→𝑗𝑗). We might have 

computed (𝑅𝑅1→2,𝑇𝑇1→2) and (𝑅𝑅1→3,𝑇𝑇1→3). But what if: 𝑅𝑅1→3
≠ 𝑅𝑅2→3𝑅𝑅1→2  and 𝑇𝑇1→3 ≠ 𝑇𝑇1→2 + 𝑇𝑇2→3?



So Why Not Just Do Bundle Adjustment Directly?

• BA = direct non-linear minimization of the reprojection errors, which is a 
good global objective for SfM.

• But:
 It requires good initializations, and
 It becomes computationally expensive as the number of cameras and 

points grows

• Often used judiciously as a “refinement” step in any SfM system, after 
initializing with other techniques. e.g. Incremental 2-view SfM as in ORB-
SLAM



How We Normally Use BA

• Start with an initial guess of 3D points and camera poses
• Project estimated 3D points through estimated camera matrices
• Compare locations of projected 3D points with measured 2D points to 

compute the reprojection error
• Adjust everything jointly to minimize the reprojection error in the images.



Hyun Soo Park



Hyun Soo Park

Near-zero reprojection errors
(perfect alignment between detection and reprojection)





3D model from 𝐹𝐹 frames, 𝑁𝑁 points

+6(F-1) camera poses
+3N 3D point
-1 scale unknown

Best case, where 
every point is visible 
in every frame.

Homogeneous 
equations 
𝒙𝒙𝑓𝑓~ 𝑅𝑅 𝑇𝑇 𝑿𝑿



How many equations do we need?

N: point correspondences
F: frames



Example: how many unknowns and equations?
• E.g. F=1k images, and N=100k points in total
 6x1k + 3x100k -7 = ~306k unknowns!

• How many equations? 
 If all points are visible everywhere, then:
 2NF = 2*1k*100k = 200M equations!
 If at least 306k of these equations are independent, we should be 

able to solve for the unknowns.
Note: These are all “back of the envelope” calculations that hide lots of 
assumptions. E.g. all points observed in all images etc. But still useful.

As a rule of thumb, a point should be visible in at least 4-6 views to enable 
robustly finding its 3D pose (structure)



Expanding the reprojection error

argmin
𝑢𝑢={ 𝑋𝑋𝑛𝑛 𝑛𝑛=1

𝑁𝑁  , 𝑅𝑅𝑓𝑓,𝑇𝑇𝑓𝑓 𝑓𝑓=1
𝐹𝐹 }

||𝜖𝜖(𝑢𝑢)||22

argmin
𝑋𝑋𝑛𝑛 𝑛𝑛=1

𝑁𝑁  , 𝑅𝑅𝑓𝑓,𝑇𝑇𝑓𝑓 𝑓𝑓=1
𝐹𝐹

𝑑𝑑(𝒙𝒙𝑖𝑖𝑓𝑓 , 𝐾𝐾𝑓𝑓[𝑅𝑅𝑓𝑓|𝑇𝑇𝑓𝑓]𝑿𝑿𝒏𝒏)

So, BA is a non-linear least squares problem. How to solve?

Also ways to introduce 
uncertainties here, but 

we skip this.

The usual thing we do for 
overdetermined systems … 

least squares





Side Notes: Suppl. Reading 
Materials



A Mini-Course on Optimization



First-order optimization methods: gradient descent

To minimize a differentiable function 𝑓𝑓(𝑥𝑥) over parameters 𝑥𝑥

1. Start from some initialization 𝑥𝑥

2. Compute the gradient 𝑔𝑔 = 𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥

(𝑥𝑥), the direction of local descent

3. Descend along that direction by some step-length 𝛼𝛼 i.e. 𝛿𝛿𝑥𝑥 = −𝛼𝛼𝑔𝑔
4. Set 𝑥𝑥 ← 𝑥𝑥 + 𝛿𝛿𝑥𝑥, then go back to step 2 and repeat

Q: How to set step-length 𝛼𝛼?
A: Often set to a small constant. Many other options, like Adaptive Gradients. 



Gradient Descent Illustration

133

ℒ(𝜽𝜽0,𝜽𝜽1)

𝜽𝜽0
𝜽𝜽1

Figure by Andrew Ng



Gradient Descent Illustration

https://sebastianraschka.com/faq/docs/gradient-optimization.html

Slow convergence due to small gradients near the minimum.

https://sebastianraschka.com/faq/docs/gradient-optimization.html


Second-order optimization: a bird’s eye view of the strategy

To minimize a (twice-) differentiable function 𝑓𝑓(𝑥𝑥) over parameters 𝑥𝑥
• Start with an initial estimate for 𝑥𝑥
• Locally approximate 𝑓𝑓(𝑥𝑥) using e.g. a second-order Taylor expansion.

𝑓𝑓 𝑥𝑥 + 𝛿𝛿𝑥𝑥 ≈ 𝑓𝑓 𝑥𝑥 + 𝑔𝑔𝑇𝑇𝛿𝛿𝑥𝑥 +
1
2
𝛿𝛿𝑥𝑥𝑇𝑇𝐻𝐻𝛿𝛿𝑥𝑥,

where: 𝑔𝑔 = 𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥

𝑥𝑥 , and 𝐻𝐻 = 𝑑𝑑2𝑓𝑓
𝑑𝑑𝑥𝑥2

(𝑥𝑥)
• Try to find a displacement 𝑥𝑥 → 𝑥𝑥 + 𝛿𝛿𝑥𝑥 that locally minimizes the quadratic 

local approximation of 𝑓𝑓(𝑥𝑥)
• This does not usually give the exact minimum of 𝑓𝑓(𝑥𝑥), but with luck it will 

improve over the initial estimate, and allow us to iterate to convergence. 

Hessian



Newton/Newton-Raphson’s method (second-order)
• Locally approximate 𝑓𝑓(𝑥𝑥) using e.g. a Taylor expansion.

𝑓𝑓 𝑥𝑥 + 𝛿𝛿𝑥𝑥 ≈ 𝑓𝑓 𝑥𝑥 + 𝑔𝑔𝑇𝑇𝛿𝛿𝑥𝑥 +
1
2
𝛿𝛿𝑥𝑥𝑇𝑇𝐻𝐻𝛿𝛿𝑥𝑥,

where: 𝑔𝑔 = 𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥

𝑥𝑥 , and 𝐻𝐻 = 𝑑𝑑2𝑓𝑓
𝑑𝑑𝑥𝑥2

(𝑥𝑥). Assume the “Hessian” 𝐻𝐻 is positive 
semi-definite for now, so that you can find the minimum.

𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥

𝑥𝑥 + 𝛿𝛿𝑥𝑥 ≈ 𝐻𝐻𝛿𝛿𝑥𝑥 + 𝑔𝑔 = 0 ⇒

𝛿𝛿𝑥𝑥 = −𝐻𝐻−1𝑔𝑔
Iterating over this update = “Newton’s method”

The most basic “second-order” non-linear optimization method
(Asymptotic quadratic convergence = error approx. squared at each iteration)

Goes directly to the 
minimum of the local 

quadratic approximation of 𝑓𝑓



Gradient Descent Vs. Newton’s Method

Kilian Weinberger

Fits a paraboloid locally and 
jumps straight to its minimum.

Faster! 



Red – Newton’s Method
Green - gradient descent iteration.

Gradient Descent Vs. Newton’s Method

Wikipedia

Newton's method uses curvature information (i.e. the second derivative) to take a more direct route.

When it works, Newton’s 
method often finds faster, 
more direct routes!

Problem: Computing the Hessian 𝐻𝐻 = 𝑑𝑑2𝑓𝑓
𝑑𝑑𝑥𝑥2

 is expensive!



Gauss-Newton Method for Least Squares part 1/2
An approximate version of Newton’s method for least squares: 

argmin
𝑢𝑢= 𝑋𝑋𝑛𝑛 𝑛𝑛=1

𝑁𝑁  , 𝑅𝑅𝑓𝑓,𝑇𝑇𝑓𝑓 𝑓𝑓=1
𝐹𝐹

𝑓𝑓 𝑢𝑢 = ||𝜖𝜖(𝑢𝑢)||22

Gradient 𝑔𝑔 = ∇u𝑓𝑓 = 2∑𝑖𝑖 𝜖𝜖𝑖𝑖 𝑢𝑢 ∇u𝜖𝜖𝑖𝑖 𝑢𝑢 = 2 𝐽𝐽 𝑢𝑢 𝑇𝑇𝝐𝝐(𝑢𝑢), 

Where 𝐽𝐽𝑖𝑖𝑗𝑗 = 𝜕𝜕𝜖𝜖𝑖𝑖
𝜕𝜕𝑢𝑢𝑗𝑗

Hessian reads (computing the gradient of 𝑔𝑔):

𝐻𝐻 𝑢𝑢 = 2�
𝑖𝑖

∇u𝜖𝜖𝑖𝑖 𝑢𝑢 ∇u𝜖𝜖𝑖𝑖 𝑢𝑢 + 𝜖𝜖𝑖𝑖 𝑢𝑢
𝜕𝜕2𝜖𝜖𝑖𝑖
𝜕𝜕2𝑢𝑢2

= 2𝐽𝐽 𝑢𝑢 𝑇𝑇𝐽𝐽 𝑢𝑢 + 2�
𝑖𝑖

𝜖𝜖𝑖𝑖 𝑢𝑢
𝜕𝜕2𝜖𝜖𝑖𝑖
𝜕𝜕𝑢𝑢2

Ignoring the hard-to-compute quadratic terms, 𝐻𝐻 𝑢𝑢 ≈ 2 𝐽𝐽 𝑢𝑢 𝑇𝑇𝐽𝐽 𝑢𝑢
Saves computation, and is approx. true when error  𝜖𝜖𝑖𝑖 is small, or the function is ~ 
linear. 

A

B

Jacobian



Gauss-Newton Method for Least Squares part 2/2

We saw earlier, Newton’s update for general non-linear optimization: 
𝛿𝛿𝑢𝑢 = −𝐻𝐻−1𝑔𝑔

For least squares problems argmin
𝑢𝑢

 𝑓𝑓 𝑢𝑢 = ||𝜖𝜖(𝑢𝑢)||22, we have seen:

• By A on the last slide, 𝑔𝑔 = 2 𝐽𝐽 𝑢𝑢 𝑇𝑇𝜖𝜖(𝑢𝑢)
• By B on the last slide, 𝐻𝐻(𝑢𝑢) ≈ 2𝐽𝐽 𝑢𝑢 𝑇𝑇𝐽𝐽 𝑢𝑢

Directly leads to Gauss-Newton update, often called “Normal Equation”:
𝛿𝛿𝑢𝑢 = − 𝐽𝐽 𝑢𝑢 𝑇𝑇𝐽𝐽 𝑢𝑢 −1𝐽𝐽 𝑢𝑢 𝑇𝑇𝜖𝜖(𝑢𝑢)

Q: Have you seen an expression like this before when solving linear equations? 
Hint: If you were minimizing 𝐴𝐴𝑥𝑥 − 𝑏𝑏 2

2
, what would the solution be?





Gauss-Newton for the BA Least Squares Problem?

Recall that the BA problem looked like:
argmin

𝑢𝑢= 𝑋𝑋𝑛𝑛 𝑛𝑛=1
𝑁𝑁  , 𝑅𝑅𝑓𝑓,𝑇𝑇𝑓𝑓 𝑓𝑓=1

𝐹𝐹
𝑓𝑓 𝑢𝑢 = ||𝜖𝜖(𝑢𝑢)||22

So the new update at each iteration would look like:
𝛿𝛿𝑢𝑢 = − 𝐽𝐽𝑇𝑇𝐽𝐽 −1𝐽𝐽𝑇𝑇𝜖𝜖

(𝐽𝐽 and 𝜖𝜖 are both functions of the parameters 𝑢𝑢)



Computational Nightmares!
We’ve decided we want to do something like:

𝛿𝛿𝑥𝑥 = − 𝐽𝐽𝑇𝑇𝐽𝐽 −1𝐽𝐽𝑇𝑇𝜖𝜖

What is the size of 𝐽𝐽 = 𝜕𝜕𝜖𝜖𝑖𝑖
𝜕𝜕𝑢𝑢𝑗𝑗 𝑖𝑖𝑗𝑗

?

Recall: 
• The dimension of the reprojection error vector 𝝐𝝐 is 2NF (F frames, N points 

in each frame, 2 dimensions per point in the reprojection error vector)
• The number of unknown parameters 𝒖𝒖 is M = 6𝐹𝐹 + 3𝑁𝑁 − 7

The size of 𝐽𝐽 is 2𝑁𝑁𝐹𝐹 ×  𝑀𝑀. (e.g. 200e6 x 306e3) 
𝐽𝐽𝑇𝑇𝐽𝐽 is 𝑀𝑀 × 𝑀𝑀 e.g. (306e3 x 306e3). 

For general matrices, inverse scales as 𝐹𝐹 𝑀𝑀3 ≈ 2.8𝑒𝑒16. 
This is all bad news!



BA is all about linear algebra implementation tricks!

• The modern bundle adjustment literature is all about how to deal with this 
massive computational complexity cleverly. 

• Some useful properties to simplify huge linear equation systems:
 Try to avoid inverses of large general matrices to the extent possible, 

and instead reduce to “simpler” matrix inverses.
 Block diagonal matrices can be inverted block-by-block.

 Try to set up equations 𝐴𝐴𝒙𝒙 = 𝒃𝒃 with triangular matrices 𝐴𝐴, much easier 
to solve. (“forward/backward substitutions”)
 Avoid matrix multiplications of large general matrices:
 Sparse matrices, including non-diagonal ones, are much easier to 

multiply
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