CIS 5800

Machine Perception

Instructor: Lingjie Liu
Lec 21: April 21, 2025

120



Recap: ORB-SLAM Pipeline

Map Initialization
Frames

Initial Map Points

Updated Map Points

F F
Tracking Kev frame Local Mapping Koy Frame Loop Closure

Stop on Closure

1 Frame per process

Update Recognition Database

Discard non Key Frame Process next frame



Recap: Structure from Motion

Images

Correspondence Search

Matching

Geometric Verification

Incremental Reconstruction

- Initialization T ittt ->

I Image Registration . Outlier Filtering l

Triangulation Bundle Adjustment

Reconstruction

BA is often the final step in SfM, used to refine camera poses and 3D points
starting from some (pretty good) initialization.




Recap: Bundle Adjustment Objective Function
* So what is the error that bundle adjustment tries to minimize?

* “Reprojection error”: The sum of errors between 2D observations and the
“re-projected” 2D points.

argmin ] z d(Xxyy, K:|R¢|Tr|Xy)
(Xnln=1 AR f;Tf}f=1 nf
d(.) is usually a simple 2D mean squared error after normalizing to

homogeneous coordinate w=1. ’

A
- N

\ Camera 3

Ryt




Hyun Soo Park

Geometric Refinement
Before Bundie Adjustment

viitad

1 = - T B b
| is;a;a,.:f\p'rm,-_a.
-4 ":?
Lo B

i :t'. C > g
" L= P - “ -
1 4 ad J : 7 s

x SIFT detection
x Reprojection




Hyun Soo P

Geometric Refinement
After Bundie Adjustment

Near-zero reprojection errors
(perfect alignment between detection and reprojection)

SIFT detection
Reprojection







3D model from F frames, N points

Reference frame ambiguity hence we fix the first frame to be the world

frame:

Ri=1 and T =0

Even with fixing the first frame, a global scale factor is still present. If we
multiply all 3D points and 7" with the same scale measurements do not

change.

Hence we have 6(F

and 2N F' equations:

+6(F-1) camera poses

— 1) 4+ 3N — 1 independent unknowns +3N 3D point

-1 scale unknown

f
WJFI% Zp+ 1a Best case, where

Homogeneous
equations
~[R|T]X

p

vp

f \f\—F‘T\
R X, + RLY, + Rl;Z, every point is visible

Rng + R, + R£3Z + 71y in every frame.

Rngp + Rgzyp + R33210 + 1%



How many equations do we need?

If equations are independent (not always) then

2NF > 6F 43N — 7

For two frames, it was already known that NV > 5.

For three frames, N > 4.

N: point correspondences
F: frames



Example: how many unknowns and equations?

* E.g. F=1k images, and N=100k points in total
= 6x1k + 3x100k -7 = ~¥306k unknowns!

* How many equations?
= |f all points are visible everywhere, then:
" 2NF = 2*1k*100k = 200M equations!

" |f at least 306k of these equations are independent, we should be
able to solve for the unknowns.

Note: These are all “back of the envelope” calculations that hide lots of
assumptions. E.g. all points observed in all images etc. But still useful.



Expanding the reprojection error

argmin i d(xys, Ke|Rs|Tr]X5)
{Xn}lr\{:l »{Rf’Tf}f=1

Here, there is no
consideration of uncertainty
of each correspondences.

The usual thing we do for We will introduce

) : 2
argmin e(u .
overdetermined systems ... Ng . lle)]|3 uncertainties later.
least squares u={(Xnin=1 ARp.Tr},_}
R X,+R! Yo+ R, Z,+T Rl X,+R},Y,+ R, Z,+T,
P RLXp+RL,Yp+RIZp+T: 7P RL Xp+RLYp+RE 24T

So, BA is a non-linear least squares problem. How to solve?







A Mini-Course on Optimization



First-order optimization methods: gradient descent

To minimize a differentiable function f(x) over parameters x

Start from some initialization x
Compute the gradient g = Vf(x), the direction of local descent
Descend along that direction by some step-length a i.e. §x = —ag

> w N

Set x <« x + 0x, then go back to step 2 and repeat

Q: How to set step-length a?
A: Often set to a small constant. Many other options, like Adaptive Gradients.




Gradient Descent lllustration

L£(0,,0,)

Figure by Andrew Ng 138



Gradient Descent lllustration

J(w) Initial

! _— Gradient

/
/
/
!

Slow convergence due to small gradients near the minimum.

https://sebastianraschka.com/faq/docs/gradient-optimization.html



https://sebastianraschka.com/faq/docs/gradient-optimization.html

Second-order optimization: a bird’s eye view of the strategy

To minimize a (twice-) differentiable function f (x) over parameters x
* Start with an initial estimate for x

* Locally approximate f(x) using e.g. a second- order Taylor expansion.

flx+6x)~f(x)+ gléx += 5xTH5x

where: g = Vf(x),and H = VZ f(x)ﬂ

* Try to find a displacement x = x + 0x that locally minimizes the quadratic
local approximation of f(x)

* This does not usually give the exact minimum of f(x), but with luck it will
improve over the initial estimate, and allow us to iterate to convergence.



Newton/Newton-Raphson’s method (second-order)
* Locally approximate f(x) at x, using e.g. a Taylor expansion.
o +8%) & f(xo) + gx)T6x + 5 827 H(xg)6

where: g(xo) = Vf(x)|x=x, and H(xy) = V* f(x)|x=y,. Assume the
“Hessian” H is positive semi-definite for now, so that you can find the

minimum.

Goes directly to the
Vf(xg+ 6x) = H(x9)0x + g(xp) = 0= minimum of the local

quadratic approximation of f
6x = —H(x9) "' g(a
Iterating over this update = “Newton’s method”
The most basic “second-order” non-linear optimization method

(Asymptotic quadratic convergence = error approx. squared at each iteration)



80 -

60

40 A

20 A

Gradient Descent Vs. Newton’s Method

Gradient Step (||g||=1.281474e+01)

/A
Original /¢
Point
After
Update 4
7
’
\ !
’
z
I I

10

Newton Step (||g||=1.232242e+01)

807 Fits a paraboloid locally and
jumps straight to its minimum.
60 1 Faster!
\
\
40 A \
\
\
\
Y Original
\\ Point
20" \\\
0 \

10



Gradient Descent Vs. Newton’s Method

’
>
X When it works, Newton’s

method often finds faster,
more direct routes!

Red — Newton’s Method
Green - gradient descent iteration.

Newton's method uses curvature information (i.e. the second derivative) to take a more direct route.
Problem: Computing the Hessian H = Vf is expensive!



Gauss-Newton Method for Least Squares part 1/2

An approximate version of Newton’s method for least squares:
argmin— f(u) = |le(W)][3
u=t0 Ny (R Ts) )

Gradientg =V, f =2, 6;(w)Vye;(w) = 2 J(w) e(w),
66
Where J;; = 52t
Hessian reads (computing the gradient of g):
H(u) = ZZ Vy€i(w)Vye;(u) + ¢ (u)
0°%€;

27+ Z () 5

lgnoring the hard-to-compute quadratic terms Hw = 2Jw)"](uw) n

Saves computation, and is approx. true when error €; is small, or the function is ~
linear.

2

Bzuz




Gauss-Newton Method for Least Squares part 2/2

We saw earlier, Newton’s update for general non-linear optimization:
ou=—-H1g

For least squares problems argmin f(u) = ||e(u)]|5, we have seen:
u

* By Aon thelastslide, g = 2 J(uw) e(u)
* By B on the last slide, H(u) = 2J(w)"](u)

Directly leads to Gauss-Newton update, often called “Normal Equation”:

Su=—-(JWTJW) JW)ew)

Q: Have you seen an expression like this before when solving linear equations?

2
Hint: If you were minimizing HAx — b] ‘2, what would the solution be?







Gauss-Newton for the BA Least Squares Problem?

Recall that the BA problem looked like:
argmin fw = lle@]l3
u:{{Xn}gﬂ '{Rf'Tf};ﬂ}
So the new update at each iteration would look like:
du=—-(J"N7"e

(J and € are both functions of the parameters u)



Computational Nightmares!
We’ve decided we want to do something like:

6x ==Y "e

What is the size of | = [gi‘]
J

ij
Recall:

argmin . ||e(u)||%
u={Xn}=1 {RETr} )

T — ol — BuXpt RVt RIgZp4 T [ Ry Xp
P Ry Xp+RLYo+REZp+ T P RS Xp+

 E.g. F=1k images, and N=100k points in total

* How many equations?

® 6x1k + 3x100k -7 = ~306k unknowns!

= |f all points are visible everywhere, then:
= 2NF = 2*1k*100k = 200M equations!

* The dimension of the reprojection error vector € is 2NF (F frames, N points
in each frame, 2 dimensions per point in the reprojection error vector)

* The number of unknown parametersuisM = 6F + 3N — 7
The size of Jis 2NF X M. (e.g. 200e6 x 306e3)

JT]is M x M e.g. (306e3 x 306e3).
For general matrices, inverse scales as 0(M3) =~ 2.8e16.

This is all bad news!



BA is all about linear algebra implementation tricks!

* The modern bundle adjustment literature is all about how to deal with this
massive computational complexity cleverly.

* Some useful properties to simplify huge linear equation systems:

" Try to avoid inverses of large general matrices to the extent possible,
and instead reduce to “simpler” matrix inverses.

" Block diagonal matrices can be inverted block-by-block.

" Try to set up equations Ax = b with triangular matrices A, much easier
to solve. (“forward/backward substitutions”)

" Avoid matrix multiplications of large general matrices:

= Sparse matrices, including non-diagonal ones, are much easier to
multiply






Sparsity in Cameras — 3D points connectivity

Schonberger and Frahm, the COLMAP paper, 2016



Separating the unknowns to see structure

Instead of the original monolithic Gauss-Newton update rule:
su=—("N7 e

Let us separate out the parameters x into:

e structure parameters a (3P-1 in number), and

e camera parameters b (6F-6 in number)

[Cl'HStructure parameters
Uu =
bl—+Camera parameters

Note: Often many more points a than cameras b



Camera -> 3D point connectivity graph

Points A, B, C, D, E
Network

graph

Cameras 1, 2, 3,4

Note that each point is visible only in a small number of cameras.

aEi 3

How does this affect the Jacobian J with ij-th element J;; = .
J



. QAl-Structure parameters
The Structure of the Jacobian J 1 =[] Comern parameter

J4: Jacobian w.r.t 3D point positions (3 cols per point)

Jp: Jacobian w.r.t camera poses (6 cols per camera)

] aEi (errorS) A B — DOE L 3 4
Y du; (parameters) a1l |3 O [ | Q: If every point were visible in every camera, how
. . A2{ | N . .

Reprojection xy errors of \““ 2 0 i | would this Jacobian change?
pt Bin camera 1 (2 rows) By| B H |

Bd| B m

J= a [] |

€3 [] O

D3 [l H|

D3 ] B |

D4 O [l

Only showing non-zero rows.
r [ '

The Jacobian is sparse, and has distinct structure in its two parts J, and J,,.

Perhaps this will be useful in computing (J7])~1JTe!



Q: If every point were

visible in every camera,
what would /7 Jlook like?

e

T
bJb

Z]b are block-diagonal, making them easy to invert.
J L], is also sparse, which is convenient in matrix operations.

The Structure of J1] L
Jb
® oem a2 E | Pa
]| s H =
08wl i O “ 2
SR W m |
B8 e m| ol ala
o m | o 0 0
D4 D.—. mEI
JaJq andJ
So we rewrite Su = —(J7]) YT € as:
T 77 171
[5& _ ]?,]a ]c;]b] ]TE,
ob ]b a ]b b

JaJa ]5]19]
]IZ a ]17; b

5)-re



Sidenote: Exploiting structure to make BA easier

o

v l5ol =

[—J" €l (jal+bpx1

Computing the matrix product on the right:

e

w115 - |

Premultiplying with a carefully chosen matrix on both sides:

[1 —WV‘1] [ U
0 I wrT

I =15 e

oy

Structure parameters
Camera parameters




Sidenote: Exploiting structure to make BA easier __ 1

u= [a amera parameters
I —-wv-tru Wjirbay _[I —-wy1 €a —
[o I “WT V”c?b] B [o I ”62_

e, —WV-le,
€

U—-wv-iwT 0] laa _
wT V1Lshb

Now, life becomes much easier. First solve for camera parameter updates da:
U -wv-iwhéa =€, —WVle,

Next, plug this in to solve for structure updates 6b: Plug in P
Véb =€, —W'éa ]

JoJa JbJb




Complexity reduced!

(T - b(]b]b)|b|x|b|]b]a) da= €, — ]b)(]b]b)lblxlblb

\

la|X|a]

J

Y

“Schur complement” form, positive definite,
makes the equation easy to solve using “Cholesky decomposition” LLT into lower triangular matrix and its

transpose

UJb) 1 0P = €6 = JpJada

Recall that]Z]b is block-diagonal, making it easy to invert block-by-block!

u=p

Structure parameters
Camera parameters







Note

* The following grayed out slides were not covered in detail and not tested,
but may be of interest to you.



Afternotes: Accounting for uncertainties in BA?

argmin le@)l13

u={{Xn}n=1 ’{Rf’Tf};zl}

argmin
u={Xn}n=1 ARF.Tf };=1}

eTWe

Prioritizes some errors over
others, and accounts for
possible correlations between
errors etc.

Basically everything we’ve
discussed applies to this case
too, with minor adjustments.



Afternotes: “Can’t we just deep-learn Bundle Adjustment?”

* After all, we constantly solve non-linear least squares problems in deep
learning with neural networks. Could we just deep learn BA?

* Answer: Researchers are trying!

Dense
Structure

Motion

I N-:Z @R Backbone (DRN-54) @ Basis Depth Maps Generator @ Feature Pyramid Constructor



Afternotes: Speed-up using advances in hardware

e F=125 frames, N=2000 points.
* “Normal computation time” ~ 1.5 seconds on CPU.

Abstract

Graph processors such as Graphcore’s Intelligence Pro-
cessing Unit (IPU) are part of the major new wave of novel
computer architecture for Al, and have a general design
with massively parallel computation, distributed on-chip
memory and very high inter-core communication bandwidth
which allows breakthrough performance for message pass-
ing algorithms on arbitrary graphs.

We show for the first time that the classical computer
vision problem of bundle adjustment (BA) can be solved
extremely fast on a graph processor using Gaussian Be-

lief Propagation. Qur simple but fully parallel implemen-
tation uses the 1216 cores on a single IPU chip to, for in-
stance, solve a real BA problem with 125 keyframes and
1919 points in under 40ms, compared to 1450ms for the
Ceres CPU library. Further code optimisation will surely

increase this difference on static problems, but we argue
that the real promise of graph processing is for flexible in-
place optimisation of general, dynamically changing factor
graphs representing Spatial Al problems. We give indica-
tions of this with experiments showing the ability of GBP to
efficiently solve incremental SLAM problems, and deal with
robust cost functions and different types of factors.

Figure 1: We map a bundle adjustment factor graph onto
the tiles (cores) of Graphcore’s IPU and show that Gaus-
sian Belief Propagation can be used for rapid, distributed,
in-place inference for large problems. Here we display the
most simple mapping in which each node in the factor graph
is mapped onto a single arbitrary tile. Keyframe nodes are
blue, landmark nodes are green and measurement factor
nodes are orange.






The original structure from motion paper from 19791

The interpretation of structure from motion

By S. ULLMAN

Artaficial Intelligence Laboratory, Massachusetts Institute of Technology,
545 Technology Square (Room 808), Cambridge, Massachusetts 02139 U.S.A.

(Communicated by S. Brenner, F.R.S. — Recerved 20 April 1978)

The interpretation of structure from motion is examined from a com-
putional point of view. The question addressed is how the three dimen-
sional structure and motion of objects can be inferred from the two
dimensional transformations of their projected images when no three
dimensional information is conveyed by the individual projections.



Some widely used solvers

e Ceres: — http://ceres-solver.org/
e GTSAM: https://estsam.org/



http://ceres-solver.org/
https://gtsam.org/

Onwards from BA: Can Further Improve Structure

e Qutput point cloud at the end of everything we have learned is a “sparse”
point cloud --- in the 3D map, it only locates the feature points for which we
had appearance-based correspondences. What about other points?

" Freezing camera parameter estimates, we can further improve structure
using “multi-view stereo”, which can produce dense 3D reconstructions.






Stereopsis For Dense Reconstruction!

material from Szeliski’s Computer Vision

and Frisbee’s book “Seeing” and slides by Kris Kitani, and
Noah Snavely



Stereogram

“The first effect of looking at a good photograph
through the stereoscope is a surprise such as no
painting ever produced. The mind feels its way

into the very depths of the picture. The scraggy
branches of a tree in the foreground run out at us
as if they would scratch our eyes out.”

Charles Wheatstone David Brewster Oliver Wendell Holmes
1838 1849 1859

https://scalar.chapman.edu/scalar/this-land-is-your-land/stereoscopes

Two images from slightly moved cameras fed
separately into the two eyes



https://scalar.chapman.edu/scalar/this-land-is-your-land/stereoscopes

14

iting

“Solid Wr

ing Stereographs

Paint

Mountains of Kong

m._._”._w..u._.._...u._. ..:.“_.._..h | ._“u.f,."'..m:_-._..m.._”

afpaspuny 15o) v wolf Saspun NGoISOMUINS
..ﬂ...:.u....u_ -_E_ ..._._”.__.q._._“___..._”.um.‘___”. SILLEL] u._”......__._m”_._..muam :._”_.—..__

Mo 7. The Toucans,



| NN\ .
orsks %&M/&e@f@&&ﬁ% ~
Crvinglorn, 28f. Littlelor. 7277  Wéstinglon. DG

L I

T

SPSUBY-2RYD)  BOPUBRD-OPNOLY, UODUOF ALOEIEY
SIS w\%ﬁQ\ v@ﬁﬁ%@ﬁw\mw @w \QQQQ\@QNM&»

in a home Library. (Z )

:nsion Cabinet i

atent Exte

Copyright 1901 by Underwood & Underwood,

The Stereograph as an Educator—Underwood P



Anaglyphs

Wikipedia



Anaglyphs and 3D movies

The left eye image is filtered to remove
blue & green. The right eye image is
filtered to remove red.







Dense Reconstruction from Known Cameras (e.g. after sim)

* Desired: Find full 3D of the scene, not just a sparse set of points in it.

* Given:
" Images of the same scene from many cameras.
= K, R, T all known for all cameras.

* “Binocular” stereo = 2-cameras.
" Plain “stereo” usually means binocular.

e “Multi-view” stereo = many cameras



VO: Frontoparallel cameras + correspondences known

3D scene X

Image

[ r

C/cameras \‘C’

How to get 3D information from [ = (u;,v;) and r = (u,, v,.)?




Basic Parallel Stereo Derivations
cameras Images 3D scene

Expressed in left camera frame
P, =((XYZ72)

Note:
v Because the camera shifts along x, v, = v,
y (More formally soon)




Basic Parallel Stereo Derivations
cameras Images 3D scene

P, =(XYZ)

X

(u, vp) = (f}:fg)
(ur: vr) — (f%»fg)

“Disparity” = difference in projections between the two cameras

B
dzul_urzf?

B
$2=fg




Examples

e Let baseline B = 10cm

* Let focal length f be 1000 px
" Nominal for an HD image (1920 x 1080) image with wide 90 degree FOV.

* If object is 1m away,
* Then disparity =d = %B = 1000 prT1 = 100 px
* If object is 100m away,
. . fB 0.1
* Then disparity = d = = 1000 pX o= 1 px
" |f baseline had been larger?
" E.g.with B = 10m, d = = 1000 px-_ = 100 px

Larger baseline stereo systems can resolve larger depths!

Point motions between cameras can be large!







Correspondences For Stereo?

* We have seen: finding 3D is easy given correspondences and K, R, T
* We know to find correspondences using optical flow.

* But pixel movements here can be large! No longer sufficient to match
locally alone! Plus, we would like dense, per-pixel correspondences!

Fortunately, correspondences are a bit easier once camera orientations are
known, as in stereo! (Hint: epipolar lines constrain point correspondences!)

Note: We have seen many times before,
correspondences help geometry.
Now: geometry helps find correspondences!

The stereo problem is really all about finding correspondences!




Putting this in context

SfM / Motion from | Triangulation | Optical Stereo &
stitching | flow* flow correspondences

3D structure unknown unknown unknown unknown unknown
Camera rotations unknown known known unknown known
Camera unknown unknown known unknown known

translations

Image pixel known known known unknown Unknown (and large
correspondences motions and dense)

Note: red unknown = we want to find, black unknown = we don’t care



Our strategy

* First deal with dense correspondence finding for the frontoparallel 2-
camera case

* Then see how to “rectify” non-frontoparallel cameras to be frontoparallel.

* Then, how to perform multi-view stereo (MVS)
®» Straightforward multi-baseline extension of 2-view stereo
" The “plane sweep” technique for MVS

* Finally (likely next class), improvement through dynamic programming.



Searching for dense correspondences
in the frontoparallel stereo setting



Correspondences for frontoparallel cameras

3D scene X We have just derived that
(w, vp) = (fg»fg) and
image (ur, vr) = (f%’fg)
So correspondences must lie
A R r on the same horizontal line!
- ‘/ cameras B \‘ o

Note: we have also seen earlier that epipolar lines for this case are horizontal!
(Q: Recall why?)






Correspondences for parallel stereo

fB
d(x,y)

Z(x, y) 1s depth at pixel (x, p)
d(x, y) 1s disparity

Z(x,y)=

depth

baseline

Matching correlation
windows across scan lines

Finding correspondences is a search problem!




Search range of disparity

* Assume some minimum “depth”: Z .

"Setd, ., = 1_ ,e.8.dmax = 100

* Quantize the interval [-d, ., d

|
ax’ max] '

= e.g. [-100, 100]-> candidate disparities [-100,-95, ..., 0, 5, 10, ..., 100]
* Now, must select from these candidate disparities for each pixel.




Components of Stereo Correspondence Matching

(error function)
» Quantify similarity of a pixel pair (candidate correspondence)
" Options: direct RGB intensity difference, correlation etc.

" How the error function is accumulated
" Options: Pixelwise, edgewise, window-wise, segment-wise ...

" How the final correspondences are determined

" Options: Winner-take-all, dynamic programming, graph cuts, belief
propagation

We will focus on the bolded choices



Matching Windows

Left Right

For a given left window, we will select from various right windows along the
scanline, as candidate correspondences.



Sum of Squared Differences (SSD) Over the Window

Left Right

w, W,

m| e [

(up,vy) (up-d,v;)

w, and w, are corresponding m by m windows of pixels.
We define the window function :
W (x,y)={u,v|x—2<us<x+Z,y-4<v<y+%4}

The SSD cost measures the intensity difference as a function of disparity :

C(x,yd)= D[ uv)-I(u=-dv)]I

(u,v)eW,, (x,y) Note: SSD is also what we
minimized in LK Optical Flow!




Matching Windows with SSD + Winner-Take-All

You will learn an alternative to the SSD, called the normalized cross-correlation

Left Right

e Lo 11 [T

SSD error
Cr(xsysd): Z[IL(u:tv)_IR(M_dﬁv)]2 hw
()W, (x,y)

»

disparity

Simplest optimization scheme: simply assign
lowest SSD as match for every window

T “Winner-take-all”



What if the cameras are not frontoparallel?



Stereo Rectification

Q: What if the cameras weren’t frontoparallel to start with?
A: “Rectification”. Make them!

Key ideas: (1) cameras can be rotated in place through homographies
(2) frontoparallel => image plane parallel to the line connecting the cameras.



Stereo Rectification

Works best in settings where the cameras are roughly alighed and nearby

) ' [

e




We know that a frontoparallel camera arrangement <=> horizontal epipolar lines
How can you make the epipolar lines horizontal?

>




Why Rectify?

* Rectification makes triangulation easy (depth o« 1/disparity)

* Also makes axis-alighed window search for correspondences easy, rather
than searching along slanted epipolar lines




Key |dea

Reproject image
planes onto a
common plane
parallel to the line
between camera
centers

Need two
homographies (3x3
transform), one for
each input image
reprojection

C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision.Computer Vision and Pattern Recognition, 1999.




Stereo Rectification:

\ y
o)
............ S
1. Compute Eto get R First get both cameras to look

the same way.




Stereo Rectification:

1. Compute EtogetR Recall, when a camera is rotated by R, it corresponds to

2. Rotate right image by R homography R:

Aq = uRp + T(= 0) = uRp, orq ~ Rp

|



Stereo Rectification:

1. Compute Eto getR At this stage, both cameras are
facing in the same diredtion.

2. ight i
Rotate right image by R But this is not enough!

Next, we must rotate both cameras (by
the same rotation), to face perpendicular
to baseline, as in frontoparallel cameras.







