
CIS 5800

Machine Perception

Instructor: Lingjie Liu
Lec 21: April 21, 2025

120Robot Image Credit: Viktoriya Sukhanova © 123RF.com

Recap: ORB-SLAM Pipeline

(Two View SfM)

Recap: Structure from Motion

BA is often the final step in SfM, used to refine camera poses and 3D points
starting from some (pretty good) initialization.

Camera 1

Camera 2

Camera 3
R1,t1

R2,t2

R3,t3

Recap: Bundle Adjustment Objective Function
• So what is the error that bundle adjustment tries to minimize?
• “Reprojection error”: The sum of errors between 2D observations and the

“re-projected” 2D points.

argmin
𝑋𝑋𝑛𝑛 𝑛𝑛=1

𝑁𝑁 , 𝑅𝑅𝑓𝑓,𝑇𝑇𝑓𝑓 𝑓𝑓=1
𝐹𝐹

�
𝑖𝑖,𝑓𝑓

𝑑𝑑(𝒙𝒙𝑖𝑖𝑓𝑓, 𝐾𝐾𝑓𝑓[𝑅𝑅𝑓𝑓|𝑇𝑇𝑓𝑓]𝑿𝑿𝒏𝒏)

𝑑𝑑(.) is usually a simple 2D mean squared error after normalizing to
homogeneous coordinate w=1.

Hyun Soo Park

Hyun Soo Park

Near-zero reprojection errors
(perfect alignment between detection and reprojection)

3D model from 𝐹𝐹 frames, 𝑁𝑁 points

+6(F-1) camera poses
+3N 3D point
-1 scale unknown

Best case, where
every point is visible
in every frame.

Homogeneous
equations
𝒙𝒙𝑓𝑓~ 𝑅𝑅 𝑇𝑇 𝑿𝑿

How many equations do we need?

N: point correspondences
F: frames

Example: how many unknowns and equations?
• E.g. F=1k images, and N=100k points in total
 6x1k + 3x100k -7 = ~306k unknowns!

• How many equations?
 If all points are visible everywhere, then:
 2NF = 2*1k*100k = 200M equations!
 If at least 306k of these equations are independent, we should be

able to solve for the unknowns.
Note: These are all “back of the envelope” calculations that hide lots of
assumptions. E.g. all points observed in all images etc. But still useful.

Expanding the reprojection error

argmin
𝑢𝑢={ 𝑋𝑋𝑛𝑛 𝑛𝑛=1

𝑁𝑁 , 𝑅𝑅𝑓𝑓,𝑇𝑇𝑓𝑓 𝑓𝑓=1
𝐹𝐹 }

||𝜖𝜖(𝑢𝑢)||22

argmin
𝑋𝑋𝑛𝑛 𝑛𝑛=1

𝑁𝑁 , 𝑅𝑅𝑓𝑓,𝑇𝑇𝑓𝑓 𝑓𝑓=1
𝐹𝐹

𝑑𝑑(𝒙𝒙𝑖𝑖𝑓𝑓 , 𝐾𝐾𝑓𝑓[𝑅𝑅𝑓𝑓|𝑇𝑇𝑓𝑓]𝑿𝑿𝒏𝒏)

So, BA is a non-linear least squares problem. How to solve?

Here, there is no
consideration of uncertainty

of each correspondences.
We will introduce
uncertainties later.

The usual thing we do for
overdetermined systems …

least squares

A Mini-Course on Optimization

First-order optimization methods: gradient descent

To minimize a differentiable function 𝑓𝑓(𝑥𝑥) over parameters 𝑥𝑥

1. Start from some initialization 𝑥𝑥
2. Compute the gradient 𝑔𝑔 = ∇𝑓𝑓 𝑥𝑥 , the direction of local descent
3. Descend along that direction by some step-length 𝛼𝛼 i.e. 𝛿𝛿𝑥𝑥 = −𝛼𝛼𝑔𝑔
4. Set 𝑥𝑥 ← 𝑥𝑥 + 𝛿𝛿𝑥𝑥, then go back to step 2 and repeat

Q: How to set step-length 𝛼𝛼?
A: Often set to a small constant. Many other options, like Adaptive Gradients.

Gradient Descent Illustration

138

ℒ(𝜽𝜽0,𝜽𝜽1)

𝜽𝜽0
𝜽𝜽1

Figure by Andrew Ng

Gradient Descent Illustration

https://sebastianraschka.com/faq/docs/gradient-optimization.html

Slow convergence due to small gradients near the minimum.

https://sebastianraschka.com/faq/docs/gradient-optimization.html

Second-order optimization: a bird’s eye view of the strategy

To minimize a (twice-) differentiable function 𝑓𝑓(𝑥𝑥) over parameters 𝑥𝑥
• Start with an initial estimate for 𝑥𝑥
• Locally approximate 𝑓𝑓(𝑥𝑥) using e.g. a second-order Taylor expansion.

𝑓𝑓 𝑥𝑥 + 𝛿𝛿𝑥𝑥 ≈ 𝑓𝑓 𝑥𝑥 + 𝑔𝑔𝑇𝑇𝛿𝛿𝑥𝑥 +
1
2
𝛿𝛿𝑥𝑥𝑇𝑇𝐻𝐻𝛿𝛿𝑥𝑥,

where: 𝑔𝑔 = ∇𝑓𝑓 𝑥𝑥 , and 𝐻𝐻 = ∇2 𝑓𝑓(𝑥𝑥)
• Try to find a displacement 𝑥𝑥 → 𝑥𝑥 + 𝛿𝛿𝑥𝑥 that locally minimizes the quadratic

local approximation of 𝑓𝑓(𝑥𝑥)
• This does not usually give the exact minimum of 𝑓𝑓(𝑥𝑥), but with luck it will

improve over the initial estimate, and allow us to iterate to convergence.

Hessian

Newton/Newton-Raphson’s method (second-order)
• Locally approximate 𝑓𝑓(𝑥𝑥) at 𝑥𝑥0 using e.g. a Taylor expansion.

𝑓𝑓 𝑥𝑥0 + 𝛿𝛿𝑥𝑥 ≈ 𝑓𝑓 𝑥𝑥0 + 𝑔𝑔 𝑥𝑥0 𝑇𝑇𝛿𝛿𝑥𝑥 +
1
2
𝛿𝛿𝑥𝑥𝑇𝑇𝐻𝐻(𝑥𝑥0)𝛿𝛿𝑥𝑥,

where: 𝑔𝑔(𝑥𝑥0) = ∇𝑓𝑓 𝑥𝑥 |𝑥𝑥=𝑥𝑥0 and 𝐻𝐻(𝑥𝑥0) = ∇2 𝑓𝑓(𝑥𝑥)|𝑥𝑥=𝑥𝑥0 . Assume the
“Hessian” 𝐻𝐻 is positive semi-definite for now, so that you can find the
minimum.

∇𝑓𝑓 𝑥𝑥0 + 𝛿𝛿𝑥𝑥 ≈ 𝐻𝐻(𝑥𝑥0)𝛿𝛿𝑥𝑥 + 𝑔𝑔(𝑥𝑥0) = 0 ⇒

𝛿𝛿𝑥𝑥 = −𝐻𝐻(𝑥𝑥0)−1𝑔𝑔(𝑥𝑥0)
Iterating over this update = “Newton’s method”

The most basic “second-order” non-linear optimization method
(Asymptotic quadratic convergence = error approx. squared at each iteration)

Goes directly to the
minimum of the local

quadratic approximation of 𝑓𝑓

Gradient Descent Vs. Newton’s Method

Kilian Weinberger

Fits a paraboloid locally and
jumps straight to its minimum.

Faster!

Red – Newton’s Method
Green - gradient descent iteration.

Gradient Descent Vs. Newton’s Method

Wikipedia

Newton's method uses curvature information (i.e. the second derivative) to take a more direct route.

When it works, Newton’s
method often finds faster,
more direct routes!

Problem: Computing the Hessian 𝐻𝐻 = ∇2𝑓𝑓 is expensive!

Gauss-Newton Method for Least Squares part 1/2
An approximate version of Newton’s method for least squares:

argmin
𝑢𝑢= 𝑋𝑋𝑛𝑛 𝑛𝑛=1

𝑁𝑁 , 𝑅𝑅𝑓𝑓,𝑇𝑇𝑓𝑓 𝑓𝑓=1
𝐹𝐹

𝑓𝑓 𝑢𝑢 = ||𝜖𝜖(𝑢𝑢)||22

Gradient 𝑔𝑔 = ∇u𝑓𝑓 = 2∑𝑖𝑖 𝜖𝜖𝑖𝑖 𝑢𝑢 ∇u𝜖𝜖𝑖𝑖 𝑢𝑢 = 2 𝐽𝐽 𝑢𝑢 𝑇𝑇𝝐𝝐(𝑢𝑢),

Where 𝐽𝐽𝑖𝑖𝑗𝑗 = 𝜕𝜕𝜖𝜖𝑖𝑖
𝜕𝜕𝑢𝑢𝑗𝑗

Hessian reads (computing the gradient of 𝑔𝑔):

𝐻𝐻 𝑢𝑢 = 2�
𝑖𝑖

∇u𝜖𝜖𝑖𝑖 𝑢𝑢 ∇u𝜖𝜖𝑖𝑖 𝑢𝑢 + 𝜖𝜖𝑖𝑖 𝑢𝑢
𝜕𝜕2𝜖𝜖𝑖𝑖
𝜕𝜕2𝑢𝑢2

= 2𝐽𝐽 𝑢𝑢 𝑇𝑇𝐽𝐽 𝑢𝑢 + 2�
𝑖𝑖

𝜖𝜖𝑖𝑖 𝑢𝑢
𝜕𝜕2𝜖𝜖𝑖𝑖
𝜕𝜕𝑢𝑢2

Ignoring the hard-to-compute quadratic terms, 𝐻𝐻 𝑢𝑢 ≈ 2 𝐽𝐽 𝑢𝑢 𝑇𝑇𝐽𝐽 𝑢𝑢
Saves computation, and is approx. true when error 𝜖𝜖𝑖𝑖 is small, or the function is ~
linear.

A

B

Jacobian

Gauss-Newton Method for Least Squares part 2/2

We saw earlier, Newton’s update for general non-linear optimization:
𝛿𝛿𝑢𝑢 = −𝐻𝐻−1𝑔𝑔

For least squares problems argmin
𝑢𝑢

 𝑓𝑓 𝑢𝑢 = ||𝜖𝜖(𝑢𝑢)||22, we have seen:

• By A on the last slide, 𝑔𝑔 = 2 𝐽𝐽 𝑢𝑢 𝑇𝑇𝜖𝜖(𝑢𝑢)
• By B on the last slide, 𝐻𝐻(𝑢𝑢) ≈ 2𝐽𝐽 𝑢𝑢 𝑇𝑇𝐽𝐽 𝑢𝑢

Directly leads to Gauss-Newton update, often called “Normal Equation”:
𝛿𝛿𝑢𝑢 = − 𝐽𝐽 𝑢𝑢 𝑇𝑇𝐽𝐽 𝑢𝑢 −1𝐽𝐽 𝑢𝑢 𝑇𝑇𝜖𝜖(𝑢𝑢)

Q: Have you seen an expression like this before when solving linear equations?
Hint: If you were minimizing 𝐴𝐴𝑥𝑥 − 𝑏𝑏 2

2
, what would the solution be?

Gauss-Newton for the BA Least Squares Problem?

Recall that the BA problem looked like:
argmin

𝑢𝑢= 𝑋𝑋𝑛𝑛 𝑛𝑛=1
𝑁𝑁 , 𝑅𝑅𝑓𝑓,𝑇𝑇𝑓𝑓 𝑓𝑓=1

𝐹𝐹
𝑓𝑓 𝑢𝑢 = ||𝜖𝜖(𝑢𝑢)||22

So the new update at each iteration would look like:
𝛿𝛿𝑢𝑢 = − 𝐽𝐽𝑇𝑇𝐽𝐽 −1𝐽𝐽𝑇𝑇𝜖𝜖

(𝐽𝐽 and 𝜖𝜖 are both functions of the parameters 𝑢𝑢)

Computational Nightmares!
We’ve decided we want to do something like:

𝛿𝛿𝑥𝑥 = − 𝐽𝐽𝑇𝑇𝐽𝐽 −1𝐽𝐽𝑇𝑇𝜖𝜖

What is the size of 𝐽𝐽 = 𝜕𝜕𝜖𝜖𝑖𝑖
𝜕𝜕𝑢𝑢𝑗𝑗 𝑖𝑖𝑗𝑗

?

Recall:
• The dimension of the reprojection error vector 𝝐𝝐 is 2NF (F frames, N points

in each frame, 2 dimensions per point in the reprojection error vector)
• The number of unknown parameters 𝒖𝒖 is M = 6𝐹𝐹 + 3𝑁𝑁 − 7

The size of 𝐽𝐽 is 2𝑁𝑁𝐹𝐹 × 𝑀𝑀. (e.g. 200e6 x 306e3)
𝐽𝐽𝑇𝑇𝐽𝐽 is 𝑀𝑀 × 𝑀𝑀 e.g. (306e3 x 306e3).

For general matrices, inverse scales as 𝐹𝐹 𝑀𝑀3 ≈ 2.8𝑒𝑒16.
This is all bad news!

BA is all about linear algebra implementation tricks!

• The modern bundle adjustment literature is all about how to deal with this
massive computational complexity cleverly.

• Some useful properties to simplify huge linear equation systems:
 Try to avoid inverses of large general matrices to the extent possible,

and instead reduce to “simpler” matrix inverses.
 Block diagonal matrices can be inverted block-by-block.

 Try to set up equations 𝐴𝐴𝒙𝒙 = 𝒃𝒃 with triangular matrices 𝐴𝐴, much easier
to solve. (“forward/backward substitutions”)
 Avoid matrix multiplications of large general matrices:
 Sparse matrices, including non-diagonal ones, are much easier to

multiply

Sparsity in Cameras – 3D points connectivity

Schonberger and Frahm, the COLMAP paper, 2016

Separating the unknowns to see structure
Instead of the original monolithic Gauss-Newton update rule:

𝛿𝛿𝒖𝒖 = − 𝐽𝐽𝑇𝑇𝐽𝐽 −1𝐽𝐽𝑇𝑇𝝐𝝐
Let us separate out the parameters 𝑥𝑥 into:
• structure parameters 𝑎𝑎 (3P-1 in number), and
• camera parameters 𝑏𝑏 (6F-6 in number)

𝒖𝒖 = 𝒂𝒂
𝒃𝒃

Structure parameters
Camera parameters

Note: Often many more points 𝒂𝒂 than cameras 𝒃𝒃

Camera -> 3D point connectivity graph

Points A, B, C, D, E

Cameras 1, 2, 3, 4

Note that each point is visible only in a small number of cameras.

How does this affect the Jacobian 𝐽𝐽 with 𝑖𝑖𝑖𝑖-th element 𝐽𝐽𝑖𝑖𝑗𝑗 = 𝜕𝜕𝜖𝜖𝑖𝑖
𝜕𝜕𝑢𝑢𝑗𝑗

 ?

The Structure of the Jacobian 𝐽𝐽

Triggs et al, Bundle Adjustment: A Modern Synthesis, 1999

𝐽𝐽𝑖𝑖𝑗𝑗 =
𝜕𝜕𝜖𝜖𝑖𝑖 (errors)

𝜕𝜕𝑢𝑢𝑗𝑗 (parameters)
Reprojection xy errors of
pt B in camera 1 (2 rows)

𝐽𝐽𝒂𝒂: Jacobian w.r.t 3D point positions (3 cols per point)

𝐽𝐽𝑏𝑏: Jacobian w.r.t camera poses (6 cols per camera)

The Jacobian is sparse, and has distinct structure in its two parts 𝐽𝐽𝑎𝑎 and 𝐽𝐽𝑏𝑏.

Perhaps this will be useful in computing 𝐽𝐽𝑇𝑇𝐽𝐽 −1𝐽𝐽𝑇𝑇𝜖𝜖!

Q: If every point were visible in every camera, how
would this Jacobian change?

Only showing non-zero rows.

The Structure of 𝐽𝐽𝑇𝑇𝐽𝐽

So we rewrite 𝛿𝛿𝒖𝒖 = − 𝐽𝐽𝑇𝑇𝐽𝐽 −1𝐽𝐽𝑇𝑇𝝐𝝐 as:

𝛿𝛿𝒂𝒂
𝛿𝛿𝒃𝒃 = −

𝐽𝐽𝑎𝑎𝑇𝑇𝐽𝐽𝑎𝑎 𝐽𝐽𝑎𝑎𝑇𝑇𝐽𝐽𝑏𝑏
𝐽𝐽𝑏𝑏𝑇𝑇𝐽𝐽𝑎𝑎 𝐽𝐽𝑏𝑏𝑇𝑇𝐽𝐽𝑏𝑏

−1

𝐽𝐽𝑇𝑇𝝐𝝐, or
𝐽𝐽𝑎𝑎𝑇𝑇𝐽𝐽𝑎𝑎 𝐽𝐽𝑎𝑎𝑇𝑇𝐽𝐽𝑏𝑏
𝐽𝐽𝑏𝑏𝑇𝑇𝐽𝐽𝑎𝑎 𝐽𝐽𝑏𝑏𝑇𝑇𝐽𝐽𝑏𝑏

𝛿𝛿𝒂𝒂
𝛿𝛿𝒃𝒃 = −𝐽𝐽𝑇𝑇𝝐𝝐

𝐽𝐽𝑎𝑎𝑇𝑇𝐽𝐽𝑎𝑎 𝐽𝐽𝑎𝑎𝑇𝑇𝐽𝐽𝑏𝑏

𝐽𝐽𝑏𝑏𝑇𝑇𝐽𝐽𝑎𝑎 𝐽𝐽𝑏𝑏𝑇𝑇𝐽𝐽𝑏𝑏

Q: If every point were
visible in every camera,
what would 𝐽𝐽𝑇𝑇𝐽𝐽look like?

𝑈𝑈

𝑉𝑉

𝑊𝑊

𝑊𝑊𝑇𝑇

𝐽𝐽𝒂𝒂

𝐽𝐽𝑏𝑏

𝐽𝐽𝑎𝑎𝑇𝑇𝐽𝐽𝑎𝑎 and 𝐽𝐽𝑏𝑏𝑇𝑇𝐽𝐽𝑏𝑏 are block-diagonal, making them easy to invert.
𝐽𝐽𝑎𝑎𝑇𝑇𝐽𝐽𝑏𝑏is also sparse, which is convenient in matrix operations.

Sidenote: Exploiting structure to make BA easier
𝑈𝑈 𝑊𝑊
𝑊𝑊𝑇𝑇 𝑉𝑉

𝛿𝛿𝒂𝒂
𝛿𝛿𝒃𝒃 = −𝐽𝐽𝑇𝑇𝝐𝝐 (𝒂𝒂 +|𝒃𝒃|)×1

Computing the matrix product on the right:
𝑈𝑈 𝑊𝑊
𝑊𝑊𝑇𝑇 𝑉𝑉

𝛿𝛿𝒂𝒂
𝛿𝛿𝒃𝒃 =

𝝐𝝐𝒂𝒂′

𝝐𝝐𝒃𝒃′

Premultiplying with a carefully chosen matrix on both sides:
𝐼𝐼 −𝑊𝑊𝑉𝑉−1
0 𝐼𝐼

𝑈𝑈 𝑊𝑊
𝑊𝑊𝑇𝑇 𝑉𝑉

𝛿𝛿𝒂𝒂
𝛿𝛿𝒃𝒃 = 𝐼𝐼 −𝑊𝑊𝑉𝑉−1

0 𝐼𝐼
𝝐𝝐𝒂𝒂′

𝝐𝝐𝒃𝒃′

Sidenote: Exploiting structure to make BA easier

𝐼𝐼 −𝑊𝑊𝑉𝑉−1
0 𝐼𝐼

𝑈𝑈 𝑊𝑊
𝑊𝑊𝑇𝑇 𝑉𝑉

𝛿𝛿𝒂𝒂
𝛿𝛿𝒃𝒃 = 𝐼𝐼 −𝑊𝑊𝑉𝑉−1

0 𝐼𝐼
𝝐𝝐𝒂𝒂′

𝝐𝝐𝒃𝒃′

𝑈𝑈 −𝑊𝑊𝑉𝑉−1𝑊𝑊𝑇𝑇 0
𝑊𝑊𝑇𝑇 𝑉𝑉

𝛿𝛿𝒂𝒂
𝛿𝛿𝒃𝒃 =

𝝐𝝐𝒂𝒂′ −𝑊𝑊𝑉𝑉−1𝝐𝝐𝒃𝒃′

𝝐𝝐𝒃𝒃′

Now, life becomes much easier. First solve for camera parameter updates 𝜹𝜹𝒂𝒂:
𝑈𝑈 −𝑊𝑊𝑉𝑉−1𝑊𝑊𝑇𝑇 𝛿𝛿𝒂𝒂 = 𝝐𝝐𝒂𝒂′ −𝑊𝑊𝑉𝑉−1𝝐𝝐𝒃𝒃′

Next, plug this in to solve for structure updates 𝜹𝜹𝒃𝒃:
𝑉𝑉𝛿𝛿𝒃𝒃 = 𝝐𝝐𝒃𝒃′ −𝑊𝑊𝑇𝑇𝛿𝛿𝑎𝑎

Plug in

Complexity reduced!

𝐽𝐽𝑎𝑎𝑇𝑇𝐽𝐽𝑎𝑎 − 𝐽𝐽𝑎𝑎𝑇𝑇𝐽𝐽𝑏𝑏 𝐽𝐽𝑏𝑏𝑇𝑇𝐽𝐽𝑏𝑏 𝑏𝑏 ×|𝑏𝑏|
−1 𝐽𝐽𝑏𝑏𝑇𝑇𝐽𝐽𝑎𝑎

𝑎𝑎 ×|𝑎𝑎|
𝛿𝛿𝒂𝒂= 𝝐𝝐𝒂𝒂′ − (𝐽𝐽𝑎𝑎𝑇𝑇𝐽𝐽𝑏𝑏) 𝐽𝐽𝑏𝑏𝑇𝑇𝐽𝐽𝑏𝑏 𝑏𝑏 ×|𝑏𝑏|

−1 𝝐𝝐𝒃𝒃′

𝐽𝐽𝑏𝑏𝑇𝑇𝐽𝐽𝑏𝑏 𝑏𝑏 ×|𝑏𝑏|𝛿𝛿𝒃𝒃 = 𝝐𝝐𝒃𝒃′ − 𝐽𝐽𝑏𝑏𝑇𝑇𝐽𝐽𝑎𝑎𝛿𝛿𝑎𝑎

Recall that 𝐽𝐽𝑏𝑏𝑇𝑇𝐽𝐽𝑏𝑏 is block-diagonal, making it easy to invert block-by-block!

“Schur complement” form, positive definite,
makes the equation easy to solve using “Cholesky decomposition” 𝐿𝐿𝐿𝐿𝑇𝑇 into lower triangular matrix and its
transpose

Note

• The following grayed out slides were not covered in detail and not tested,
but may be of interest to you.

Afternotes: Accounting for uncertainties in BA?

argmin
𝑢𝑢={ 𝑋𝑋𝑛𝑛 𝑛𝑛=1

𝑁𝑁 , 𝑅𝑅𝑓𝑓,𝑇𝑇𝑓𝑓 𝑓𝑓=1
𝐹𝐹 }

||𝜖𝜖(𝑢𝑢)||22

argmin
𝑢𝑢={ 𝑋𝑋𝑛𝑛 𝑛𝑛=1

𝑁𝑁 , 𝑅𝑅𝑓𝑓,𝑇𝑇𝑓𝑓 𝑓𝑓=1
𝐹𝐹 }

𝜖𝜖𝑇𝑇𝑊𝑊𝜖𝜖

Prioritizes some errors over
others, and accounts for
possible correlations between
errors etc.

Basically everything we’ve
discussed applies to this case
too, with minor adjustments.

Afternotes: “Can’t we just deep-learn Bundle Adjustment?”

• After all, we constantly solve non-linear least squares problems in deep
learning with neural networks. Could we just deep learn BA?

• Answer: Researchers are trying!

Tang et al, BA-Net, 2019

Afternotes: Speed-up using advances in hardware

• F=125 frames, N=2000 points.
• “Normal computation time” ~ 1.5 seconds on CPU.

Ortiz et al, Bundle Adjustment on a Graph Processor, CVPR 2020

The original structure from motion paper from 1979!

Ullman, 1979

Some widely used solvers

• Ceres: – http://ceres-solver.org/
• GTSAM: https://gtsam.org/

http://ceres-solver.org/
https://gtsam.org/

Onwards from BA: Can Further Improve Structure

• Output point cloud at the end of everything we have learned is a “sparse”
point cloud --- in the 3D map, it only locates the feature points for which we
had appearance-based correspondences. What about other points?
 Freezing camera parameter estimates, we can further improve structure

using “multi-view stereo”, which can produce dense 3D reconstructions.

Stereopsis For Dense Reconstruction!

material from Szeliski’s Computer Vision
and Frisbee’s book “Seeing” and slides by Kris Kitani, and

Noah Snavely

Stereogram

https://scalar.chapman.edu/scalar/this-land-is-your-land/stereoscopes

Two images from slightly moved cameras fed
separately into the two eyes

Charles Wheatstone
1838

Oliver Wendell Holmes
1859

David Brewster
1849

“The first effect of looking at a good photograph
through the stereoscope is a surprise such as no
painting ever produced. The mind feels its way
into the very depths of the picture. The scraggy
branches of a tree in the foreground run out at us
as if they would scratch our eyes out.”

https://scalar.chapman.edu/scalar/this-land-is-your-land/stereoscopes

Painting Stereographs: “Solid Writing”

Wikipedia

Anaglyphs

Wikipedia

Anaglyphs and 3D movies

The left eye image is filtered to remove
blue & green. The right eye image is
filtered to remove red.

Dense Reconstruction from Known Cameras (e.g. after SfM)

• Desired: Find full 3D of the scene, not just a sparse set of points in it.
• Given:
 Images of the same scene from many cameras.
𝐾𝐾,𝑅𝑅,𝑇𝑇 all known for all cameras.

• “Binocular” stereo = 2-cameras.
 Plain “stereo” usually means binocular.

• “Multi-view” stereo = many cameras

V0: Frontoparallel cameras + correspondences known

C C’

X

𝑙𝑙 𝑟𝑟

How to get 3D information from 𝑙𝑙 = (𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖) and 𝑟𝑟 = (𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖)?

cameras

images

3D scene

Basic Parallel Stereo Derivations

PL = (X,Y,Z)OL

x

y

z (uL,vL)

OR

x

y

z

(uR,vR)

Note:
Because the camera shifts along 𝑥𝑥, 𝑣𝑣𝐿𝐿 = 𝑣𝑣𝑅𝑅
(More formally soon)

cameras images 3D scene

Expressed in left camera frame

Basic Parallel Stereo Derivations

PL = (X,Y,Z)OL

x

y

z (uL,vL)

OR

x

y

z

(uR,vR)

cameras images 3D scene

𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖 = 𝑓𝑓 𝑋𝑋
𝑍𝑍

,𝑓𝑓 𝑌𝑌
𝑍𝑍

𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖 = 𝑓𝑓 𝑋𝑋−𝐵𝐵
𝑍𝑍

,𝑓𝑓 𝑌𝑌
𝑍𝑍

“Disparity” = difference in projections between the two cameras

𝑑𝑑 = 𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑖𝑖 = 𝑓𝑓
𝐵𝐵
𝑍𝑍

⇒ 𝑍𝑍 = 𝑓𝑓
𝐵𝐵
𝑑𝑑

Examples
• Let baseline 𝐵𝐵 = 10cm
• Let focal length 𝑓𝑓 be 1000 px
Nominal for an HD image (1920 x 1080) image with wide 90 degree FOV.

• If object is 1m away,
 Then disparity = 𝑑𝑑 = 𝑓𝑓𝐵𝐵

𝑍𝑍
= 1000 px 0.1

1
= 100 px

• If object is 100m away,
 Then disparity = 𝑑𝑑 = 𝑓𝑓𝐵𝐵

𝑍𝑍
= 1000 px 0.1

100
= 1 px

 If baseline had been larger?
 E.g. with 𝐵𝐵 = 10m, 𝑑𝑑 = 𝑓𝑓𝐵𝐵

𝑍𝑍
= 1000 px 10

100
= 100 px

Larger baseline stereo systems can resolve larger depths!
Point motions between cameras can be large!

Correspondences For Stereo?
• We have seen: finding 3D is easy given correspondences and 𝐾𝐾,𝑅𝑅,𝑇𝑇
• We know to find correspondences using optical flow.
• But pixel movements here can be large! No longer sufficient to match

locally alone! Plus, we would like dense, per-pixel correspondences!
Fortunately, correspondences are a bit easier once camera orientations are
known, as in stereo! (Hint: epipolar lines constrain point correspondences!)

Note: We have seen many times before,
correspondences help geometry.

Now: geometry helps find correspondences!

The stereo problem is really all about finding correspondences!

Putting this in context

SfM /
stitching

Motion from
flow*

Triangulation Optical
flow

Stereo &
correspondences

3D structure unknown unknown unknown unknown unknown

Camera rotations unknown known known unknown known

Camera
translations

unknown unknown known unknown known

Image pixel
correspondences

known known known unknown Unknown (and large
motions and dense)

Note: red unknown = we want to find, black unknown = we don’t care

Our strategy

• First deal with dense correspondence finding for the frontoparallel 2-
camera case

• Then see how to “rectify” non-frontoparallel cameras to be frontoparallel.

• Then, how to perform multi-view stereo (MVS)
 Straightforward multi-baseline extension of 2-view stereo
 The “plane sweep” technique for MVS

• Finally (likely next class), improvement through dynamic programming.

Searching for dense correspondences
in the frontoparallel stereo setting

Correspondences for frontoparallel cameras

C C’

X

𝑙𝑙 𝑟𝑟

Note: we have also seen earlier that epipolar lines for this case are horizontal!
(Q: Recall why?)

We have just derived that
𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖 = 𝑓𝑓 𝑋𝑋

𝑍𝑍
,𝑓𝑓 𝑌𝑌

𝑍𝑍
 and

𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖 = 𝑓𝑓 𝑋𝑋−𝐵𝐵
𝑍𝑍

, 𝑓𝑓 𝑌𝑌
𝑍𝑍

So correspondences must lie
on the same horizontal line!

cameras

images

3D scene

B

Correspondences for parallel stereo

Left Right

Matching correlation
windows across scan lines

baseline

depth

Finding correspondences is a search problem!

),(
),(

yxd
BfyxZ =

Z(x, y) is depth at pixel (x, y)
d(x, y) is disparity

Search range of disparity

• Assume some minimum “depth”: Zmin
 Set 𝑑𝑑max = 1

𝑍𝑍min
, e.g. 𝑑𝑑max = 100

• Quantize the interval [-dmax, dmax]!
 e.g. [-100, 100]-> candidate disparities [-100,-95, …, 0, 5, 10, …, 100]

• Now, must select from these candidate disparities for each pixel.

Components of Stereo Correspondence Matching

• Matching criterion (error function)
Quantify similarity of a pixel pair (candidate correspondence)
Options: direct RGB intensity difference, correlation etc.

• Aggregation method
How the error function is accumulated
Options: Pixelwise, edgewise, window-wise, segment-wise …

• Optimization and winner selection
How the final correspondences are determined
Options: Winner-take-all, dynamic programming, graph cuts, belief

propagation

We will focus on the bolded choices

Matching Windows

Left Right

scanline

For a given left window, we will select from various right windows along the
scanline, as candidate correspondences.

Sum of Squared Differences (SSD) Over the Window

Left Right

Lw Rw

LI RI

∑
∈

−−=

+≤≤−+≤≤−=

),(),(

2

2222

)],(),([),,(
:disparity offunction a as differenceintensity themeasurescost SSD The

},|,{),(
:function window thedefine We

pixels. of windowsby ingcorrespond are and

yxWvu
RLr

mmmm
m

RL

m

vduIvuIdyxC

yvyxuxvuyxW

mmww

Lw Rw
m

m

(uL,vL) (uL-d,vL)

Note: SSD is also what we
minimized in LK Optical Flow!

Matching Windows with SSD + Winner-Take-All

SSD error

disparity

Left Right

scanline

“Winner-take-all”
Simplest optimization scheme: simply assign
lowest SSD as match for every window

You will learn an alternative to the SSD, called the normalized cross-correlation

What if the cameras are not frontoparallel?

Stereo Rectification

Q: What if the cameras weren’t frontoparallel to start with?
A: “Rectification”. Make them!

Key ideas: (1) cameras can be rotated in place through homographies
(2) frontoparallel => image plane parallel to the line connecting the cameras.

Stereo Rectification

Works best in settings where the cameras are roughly aligned and nearby

We know that a frontoparallel camera arrangement <=> horizontal epipolar lines

Why Rectify?

• Rectification makes triangulation easy (depth ∝ 1/disparity)
• Also makes axis-aligned window search for correspondences easy, rather

than searching along slanted epipolar lines

Key Idea

First get both cameras to look
the same way.

Recall, when a camera is rotated by 𝑅𝑅, it corresponds to
homography 𝑅𝑅:

𝜆𝜆𝜇𝜇 = 𝜇𝜇𝑅𝑅𝜆𝜆 + 𝑇𝑇 = 0 = 𝜇𝜇𝑅𝑅𝜆𝜆, or 𝜇𝜇 ∼ 𝑅𝑅𝜆𝜆

At this stage, both cameras are
facing in the same direction.
But this is not enough!

Next, we must rotate both cameras (by
the same rotation), to face perpendicular
to baseline, as in frontoparallel cameras.

