
CIS 5800

Machine Perception

Instructor: Lingjie Liu
Lec 22: April 23, 2025

220Robot Image Credit: Viktoriya Sukhanova © 123RF.com

Administrivia

• HW5 (optional, 6pts) for grade compensation will release by Friday and
the due is May 14.

• Final exam coming up
 Date reminder: Wednesday May 7, 3-5pm in DRLB A1. (Info is on courses.upenn.edu)
 Syllabus: Mainly the material covered in class after Wed March 19 (not covered by

mid-term exam).
 Review lecture in the last class on Wed April 30.
 If you are unable to attend the midterm exam in person on May 7, please

complete the form by April 30: https://forms.gle/JwaAxrKGfBzoo6z77
 Also, you need to contact the Weingarten Office for academic accommodations and

send me the paperwork or approval from the Weingarten Office.

http://courses.upenn.edu/
https://weingartencenter.universitylife.upenn.edu/academic-accommodations/

Recap: Basic Parallel Stereo Derivations

PL = (X,Y,Z)OL

x

y

z (uL,vL)

OR

x

y

z

(uR,vR)

cameras images 3D scene

𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖 = 𝑓𝑓 𝑋𝑋
𝑍𝑍

,𝑓𝑓 𝑌𝑌
𝑍𝑍

𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖 = 𝑓𝑓 𝑋𝑋−𝐵𝐵
𝑍𝑍

,𝑓𝑓 𝑌𝑌
𝑍𝑍

“Disparity” = difference in projections between the two cameras

𝑑𝑑 = 𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑖𝑖 = 𝑓𝑓
𝐵𝐵
𝑍𝑍

⇒ 𝑍𝑍 = 𝑓𝑓
𝐵𝐵
𝑑𝑑

Recap: Putting this in context

SfM /
stitching

Motion from
flow*

Triangulation Optical
flow

Stereo &
correspondences

3D structure unknown unknown unknown unknown unknown

Camera rotations unknown known known unknown known

Camera
translations

unknown unknown known unknown known

Image pixel
correspondences

known known known unknown Unknown (and large
motions and dense)

Note: red unknown = we want to find, black unknown = we don’t care

Our strategy

• First deal with dense correspondence finding for the frontoparallel 2-
camera case

• Then see how to “rectify” non-frontoparallel cameras to be frontoparallel.

• Then, how to perform multi-view stereo (MVS)
 Straightforward multi-baseline extension of 2-view stereo
 The “plane sweep” technique for MVS

• Finally, improvement through dynamic programming.

Searching for dense correspondences
in the frontoparallel stereo setting

Correspondences for frontoparallel cameras

C C’

X

𝑙𝑙 𝑟𝑟

We have derived that
𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖 = 𝑓𝑓 𝑋𝑋

𝑍𝑍
,𝑓𝑓 𝑌𝑌

𝑍𝑍
 and

𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖 = 𝑓𝑓 𝑋𝑋−𝐵𝐵
𝑍𝑍

, 𝑓𝑓 𝑌𝑌
𝑍𝑍

So correspondences must lie
on the same horizontal line!

cameras

images

3D scene

B

Note: we have also seen earlier that epipolar lines for this case are horizontal!
(Q: Recall why?)

Recap: “Epipolar Lines” Pass Through “Epipoles”

“epipolar lines”

𝑒𝑒𝑝𝑝~ −𝑅𝑅𝑇𝑇 𝑇𝑇 and 𝑒𝑒𝑞𝑞~𝑇𝑇 are the “epipoles” = images of the other
camera center on each plane = intersections of baseline T with
the two planes = VP of the translation direction in each plane.

Recap: “frontoparallel” / “parallel stereo” cameras

𝑒𝑒𝑝𝑝~ −𝑅𝑅𝑇𝑇 𝑇𝑇 = −𝑇𝑇 = [−𝐵𝐵, 0, 0]𝑇𝑇
𝑒𝑒𝑞𝑞~𝑇𝑇 = [𝐵𝐵, 0, 0]𝑇𝑇

Correspondences are
restricted to the “same” row
in the other image!

C C’

X

p q

Correspondences for parallel stereo

Left Right

Matching correlation
windows across scan lines

baseline

depth

Finding correspondences is a search problem!

),(
),(

yxd
BfyxZ =

Z(x, y) is depth at pixel (x, y)
d(x, y) is disparity

Search range of disparity

• Assume some minimum “depth”: Zmin
 Set 𝑑𝑑max = 𝑓𝑓𝐵𝐵

𝑍𝑍min
, e.g. 𝑑𝑑max = 100

• Quantize the interval [-dmax, dmax]!
 e.g. [-100, 100]-> candidate disparities [-100,-95, …, 0, 5, 10, …, 100]

• Now, must select from these candidate disparities for each pixel.

Components of Stereo Correspondence Matching

• Matching criterion (error function)
Quantify similarity of a pixel pair (candidate correspondence)
Options: direct RGB intensity difference, correlation etc.

• Aggregation method
How the error function is accumulated
Options: Pixelwise, edgewise, window-wise, segment-wise …

• Optimization and winner selection
How the final correspondences are determined
Options: Winner-take-all, dynamic programming, graph cuts, belief

propagation

We will focus on the bolded choices

Matching Windows

Left Right

scanline

For a given left window, we will select from various right windows along the
scanline, as candidate correspondences.

Sum of Squared Differences (SSD) Over the Window

Left Right

Lw Rw

LI RI

∑
∈

−−=

+≤≤−+≤≤−=

),(),(

2

2222

)],(),([),,(
:disparity offunction a as differenceintensity themeasurescost SSD The

},|,{),(
:function window thedefine We

pixels. of windowsby ingcorrespond are and

yxWvu
RLr

mmmm
m

RL

m

vduIvuIdyxC

yvyxuxvuyxW

mmww

Lw Rw
m

m

(uL,vL) (uL-d,vL)

Note: SSD is also what we
minimized in LK Optical Flow!

Matching Windows with SSD + Winner-Take-All

SSD error

disparity

Left Right

scanline

“Winner-take-all”
Simplest optimization scheme: simply assign
lowest SSD as match for every window

You will learn an alternative to the SSD, called the normalized cross-correlation

What if the cameras are not frontoparallel?

Our strategy

• First deal with dense correspondence finding for the frontoparallel 2-
camera case

• Then see how to “rectify” non-frontoparallel cameras to be frontoparallel.

• Then, how to perform multi-view stereo (MVS)
 Straightforward multi-baseline extension of 2-view stereo
 The “plane sweep” technique for MVS

• Finally, improvement through dynamic programming.

Stereo Rectification

Q: What if the cameras weren’t frontoparallel to start with?
A: “Rectification”. Make them!

Key ideas: (1) cameras can be rotated in place through homographies
(2) frontoparallel => image plane parallel to the line connecting the cameras.

Stereo Rectification

Works best in settings where the cameras are roughly aligned and nearby

We know that a frontoparallel camera arrangement <=> horizontal epipolar lines

Why Rectify?

• Rectification makes triangulation easy (depth ∝ 1/disparity)
• Also makes axis-aligned window search for correspondences easy, rather

than searching along slanted epipolar lines

Key Idea

First get both cameras to look
the same way.

Recall, when a camera is rotated by 𝑅𝑅, it corresponds to
homography 𝑅𝑅:

𝜆𝜆𝜇𝜇 = 𝜇𝜇𝑅𝑅𝜆𝜆 + 𝑇𝑇 = 0 = 𝜇𝜇𝑅𝑅𝜆𝜆, or 𝜇𝜇 ∼ 𝑅𝑅𝜆𝜆

At this stage, both cameras are
facing in the same direction.
But this is not enough!

Next, we must rotate both cameras (by
the same rotation), to face perpendicular
to baseline, as in frontoparallel cameras.

Building 𝑹𝑹𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 by setting epipole to ∞

then where does the homography containing these row
vectors move the epipole to?

𝑟𝑟1𝑇𝑇

𝑟𝑟2𝑇𝑇

𝑟𝑟3𝑇𝑇
𝑒𝑒1 =

1
0
0

, the point at infinity in the X direction!

In other words, such a homography would suffice to move the epipole off to
infty (along image plane x-axis), which, we know frontoparallel cameras
(displaced along camera X-axis)!

(unit vector of epipole, because epipole = image of the other camera center)

Formula for “smallest rotation” 𝑹𝑹𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓
(minimum distortion homography)

In calibrated coordinates,

(this is unit vector of 𝒓𝒓1 × 0,0,1 𝑇𝑇)

Epipole 𝐞𝐞1 = 𝑇𝑇/||𝑇𝑇||,
where 𝑇𝑇 from essential matrix 𝐸𝐸
By solving 𝐸𝐸𝑇𝑇 = 0 (smallest right
singular vector of E)

Q: Are 𝑟𝑟2, 𝑟𝑟3 actually perpendicular to 𝑟𝑟1 = 𝑒𝑒1 here (as required by previous slide)?
Why?

Now, both cameras are looking perpendicular to the
baseline, and epipolar lines are parallel and horizontal!

Stereo Rectification Algorithm Pseudocode

1. Estimate 𝐸𝐸 using 8-point algorithm
2. Decompose 𝐸𝐸 into 𝑅𝑅 and 𝑇𝑇~𝒓𝒓
3. Build 𝑅𝑅rect from 𝒓𝒓
4. Set 𝑅𝑅1 = 𝑅𝑅𝑖𝑖𝑖𝑖𝑟𝑟𝑡𝑡 and 𝑅𝑅2 = 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑟𝑟𝑡𝑡
5. Finally, on left and right camera pixel planes, apply the homographies:

𝐾𝐾𝑅𝑅1 and 𝐾𝐾𝑅𝑅2 respectively*

*You may need to alter 𝐾𝐾 to keep points within the original image size

After Rectification

• And now after rectification, we are back in the frontoparallel setting.
• So, can find dense correspondences by searching along horizontal scanlines

e.g. using SSD on windows and applying winner-take-all matching.
• And then, use the parallel camera triangulation equation to find depths 𝑍𝑍 =
𝑓𝑓 𝐵𝐵
𝑑𝑑

, at all the dense correspondence points

And thus, dense 3D!

Dense Disparity / Depth Maps

Right ImageLeft Image

View Interpolation
Note: the interpolation here is from left image, black regions where pixels are
disoccluded between left and right images.

Multi-View Stereo
Based on slides by Noah Snavely

Our strategy

• First deal with dense correspondence finding for the frontoparallel 2-
camera case

• Then see how to “rectify” non-frontoparallel cameras to be frontoparallel.

• Then, how to perform multi-view stereo (MVS)
 Straightforward multi-baseline extension of 2-view stereo
 The “plane sweep” technique for MVS

• Finally, improvement through dynamic programming.

Multi-view Stereo

Binocular Stereo Multi-view stereo

Problem formulation: given several images of the same
object or scene, compute a representation of its 3D shape

Multi-view Stereo Camera Systems

Point Grey’s Bumblebee XB3

Point Grey’s ProFusion 25

CMU’s Panoptic Studio

http://www.ptgrey.com/
http://www.ptgrey.com/
http://domedb.perception.cs.cmu.edu/

Multi-view Stereo

Figures by Carlos Hernandez

Input: calibrated images from several viewpoints (known intrinsics and
extrinsics / projection matrices)
Output: 3D object model

Dense maps of cities with MVS

Dense models of historical artifacts with MVS

Extending 2-view correspondences to multiple views

reference view neighbor views

Source: Y. Furukawa

When trying to figure out the depth of a pixel in a reference view,
we now have more than just 1 additional view. More information

should lead to better depths, hopefully!

Exploiting multiple neighbors

• Can match windows using more than 1 neighboring view, giving a stronger
match signal

• If you have lots of potential neighbors, can choose the best subset of
neighbors to match per reference image

• Can reconstruct a depth map for each reference frame, and then merge
into a complete 3D model

width of
a pixel

Pick Neighbors Based On Baseline?

What’s the optimal baseline?
 Too small: large depth error
 Too large: difficult search problem

Large Baseline Small Baseline

all of these
points project
to the same
pair of pixels

(Recall that we have already seen this when discussing ORB-SLAM)

The Effect of Baseline on Depth Estimation

I1 I2 I10

What if we could use all baselines together somehow?

z

width of
a pixel

width of
a pixel

z

pixel matching score

M. Okutomi and T. Kanade, “A Multiple-Baseline Stereo System,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, 15(4):353-363, 1993.

• For larger baselines, must search larger
area in second image

• For short baselines, estimated depth will be less
precise due to narrow triangulation

Different Baselines Have Different Problems

Simple Solution: Combine Them All!

reference view neighbor views

Source: Y. Furukawa

Multiple Baseline Sum of SSD errors
Error aggregated over all (reference 0, neighbor i) pairs

Multiple Baseline Sum of SSD errors

reference view neighbor views

Source: Y. Furukawa

Error aggregated over all (reference 0, neighbor i) pairs

reference view neighbor views

Source: Y. Furukawa

In this manner, solve for a depth map over the whole
reference view

Multiple Baseline Sum of SSD errors
Error aggregated over all (reference 0, neighbor i) pairs

I1 I2 I10

Multiple-Baseline Multi-View Stereo Results

M. Okutomi and T. Kanade, A Multiple-Baseline Stereo System, IEEE Trans. on
Pattern Analysis and Machine Intelligence, 15(4):353-363 (1993).

Multiple-Baseline Multi-View Stereo Summary

Basic Approach
 Choose a reference view
Use your favorite stereo algorithm BUT
 replace two-view SSD with SSSD (sum of sums of squared

distances) over all baselines
 SSSD: the SSD values are computed first for each pair of stereo

images, and then add all together from multiple stereo pairs.

Limitations
Won’t work for widely distributed views.

Our strategy

• First deal with dense correspondence finding for the frontoparallel 2-
camera case

• Then see how to “rectify” non-frontoparallel cameras to be frontoparallel.

• Then, how to perform multi-view stereo (MVS)
 Straightforward multi-baseline extension of 2-view stereo
 The “plane sweep” technique for MVS

• Finally, improvement through dynamic programming.

Plane Sweep

Plane-Sweep Stereo

Camera 1

Camera 2

Camera 3
R1,t1

R2,t2

R3,t3

An efficient way to compute multi-view stereo

Plane-Sweep Stereo

Camera 1

Camera 2

Camera 3
R1,t1

R2,t2

R3,t3

Proposed point
at correct depth

Photo-consistent projections

Plane-Sweep Stereo

Camera 1

Camera 2

Camera 3
R1,t1

R2,t2

R3,t3

Proposed point at
incorrect depth

Photo-inconsistent projections

Plane-Sweep Stereo
• At each iteration, we pretend that each camera’s entire image was of a single plane at

depth 𝑧𝑧 from the reference camera, and backproject onto that plane from each camera,
and see how much the neighbors agree, for each pixel.

• When neighbors agree at a pixel, that pixel is likely to have depth 𝒛𝒛𝟎𝟎. The pixel’s “cost”
for depth 𝒛𝒛 is the variance over neighbor backprojections.

• Then 𝑧𝑧 is incremented and the next iteration begins!
• At the end of the “sweep” over 𝑧𝑧, the min-cost 𝑧𝑧 is selected for each pixel, to form the

full dense depth map

reference camera

neighbor camera 1 neighbor camera 2

Plane-Sweep Stereo

Reference image Right neighborLeft neighbor

Left neighbor projected into
reference camera’s Z=z plane

Right neighbor projected into
reference camera’s Z=z plane

Average image on the reference
camera’s Z=z plane

Blurriness in the average images => more disagreement.

Gifs show
increasing
depth𝑧𝑧

Reference image Right neighborLeft neighbor

Planar image reprojections swept
over depth (averaged)

Another example

Reference image

Single pixel’s cost
profile

depth

cost

Full cost volume

Depth map
solver

(Belief propagation,
graph cuts, etc.)

Cost Volumes -> Depth Maps

Fusing multiple depth maps

• Compute depth map per image
• Fuse the depth maps into a 3D model

Figures by Carlos Hernandez

Note on Visibility in MVS

• When backprojecting in this fashion and measuring disagreement to check
for whether a point is at the right depth plane, we are assuming that
disagreement can only arise from projecting to the wrong depth.

• In reality, other possibilities:
 specular/shiny objects that might look different from different angles
Occlusions! Not every point is even visible in every camera to start with,

so often MVS requires jointly estimating visibility *and* dense
correspondences.
 For example, if there is large agreement among one subset of views,

but large disagreement among others, this may indicate occlusion in
the other views.

