
CIS 5800

Machine Perception

Instructor: Lingjie Liu

Lec 24: April 28, 2025

1Robot Image Credit: Viktoriya Sukhanova © 123RF.com

Our strategy

• First deal with dense correspondence finding for the frontoparallel 2-
camera case

• Then see how to “rectify” non-frontoparallel cameras to be frontoparallel.

• Then, how to perform multi-view stereo (MVS)

▪ Straightforward multi-baseline extension of 2-view stereo

▪ The “plane sweep” technique for MVS

• Finally, improvement through dynamic programming.

Plane Sweep

Plane-Sweep Stereo

Camera 1

Camera 2

Camera 3

R1,t1
R2,t2

R3,t3

An efficient way to compute multi-view stereo

Plane-Sweep Stereo

Camera 1

Camera 2

Camera 3

R1,t1
R2,t2

R3,t3

Proposed point
at correct depth

Photo-consistent projections

Plane-Sweep Stereo

Camera 1

Camera 2

Camera 3

R1,t1
R2,t2

R3,t3

Proposed point at
incorrect depth

Photo-inconsistent projections

Plane-Sweep Stereo

• At each iteration, we pretend that each camera’s entire image was of a single plane at
depth 𝑧 from the reference camera, and backproject onto that plane from each camera,
and see how much the neighbors agree, for each pixel.

• When neighbors agree at a pixel, that pixel is likely to have depth 𝒛𝟎. The pixel’s “cost”
for depth 𝒛 is the variance over neighbor backprojections.

• Then 𝑧 is incremented and the next iteration begins!
• At the end of the “sweep” over 𝑧, the min-cost 𝑧 is selected for each pixel, to form the

full dense depth map

reference camera

neighbor camera 1 neighbor camera 2

Plane-Sweep Stereo

Reference image Right neighborLeft neighbor

Left neighbor projected into
reference camera’s Z=z plane

Right neighbor projected into
reference camera’s Z=z plane

Average image on the reference
camera’s Z=z plane

Blurriness in the average images => more disagreement.

Gifs show
increasing
depth𝑧

Reference image Right neighborLeft neighbor

Planar image reprojections swept
over depth (averaged)

Another example

Reference image

Single pixel’s cost
profile

depth

cost

Full cost volume

Depth map
solver

(Belief propagation,
graph cuts, etc.)

Cost Volumes -> Depth Maps

Fusing multiple depth maps

• Compute depth map per image

• Fuse the depth maps into a 3D model

Figures by Carlos Hernandez

Note on Visibility in MVS

• When backprojecting in this fashion and measuring disagreement to check
for whether a point is at the right depth plane, we are assuming that
disagreement can only arise from projecting to the wrong depth.

• In reality, other possibilities:

▪ specular/shiny objects that might look different from different angles

▪ Occlusions! Not every point is even visible in every camera to start with,
so often MVS requires jointly estimating visibility *and* dense
correspondences.

▪ For example, if there is large agreement among one subset of views,
but large disagreement among others, this may indicate occlusion in
the other views.

Improved Techniques for Multi-view Stereo

Components of Stereo Correspondence Matching

• Matching criterion (error function)

▪ Quantify similarity of pixels

▪ Options: direct RGB intensity difference (SSD based), NCC etc.

• Aggregation method

▪ How error function is accumulated

▪ Options: Pixelwise, edgewise, window-wise, segment-wise …

• Optimization and winner selection

▪ Examples: Winner-take-all, dynamic programming, graph cuts, belief
propagation

Alternatives to SSD based matching

Window Matching for Stereo Correspondence Finding

Carlos Hernandez and Yasutaka Furakawa, 2015

Note: these are unrectified
images, so epipolar lines are not
horizontal, but in practice,
matching is done after
rectification.

𝑊𝑖

Searching for matching
𝑊𝑗 along epipolar lines

Popular window matching scores beyond SSD

• SSD (Sum of Squared Differences)

• SAD (Sum of Absolute Differences)

• ZNCC (Zero-mean Normalized Cross Correlation), sometimes just “NCC”

▪ where

NCC Injects Some Invariance
• NCC instead of SSD helps account for the fact that pixels might not be

exactly same, because images have been captured with different
illumination / from different cameras.

x

I

x

I

SSD

x

I

x

I

NCC

False Positives in NCC
But the invariance in NCC can also produce more “false positives”, because it
can be too forgiving on mismatched patches.

?

Components of Stereo Correspondence Matching

• Matching criterion (error function)

▪ Quantify similarity of pixels

▪ Options: direct RGB intensity difference (SSD based), NCC etc.

• Aggregation method

▪ How error function is accumulated

▪ Options: Pixelwise, edgewise, window-wise, segment-wise …

• Optimization and winner selection

▪ Examples: Winner-take-all, dynamic programming, graph cuts, belief
propagation

Doing better than “Winner-Take-All” matching

Winner-Take-All is Fragile

• Recall, until now, we have assigned independent correspondences for each
window / pixel / region based purely on lowest SSD / NCC etc.

• But this can be fragile and ignore signs of erroneous correspondences:

▪ 1. A correspond to B, but B does not correspond to A.

Left-Right Consistency Checking

• Can check for consistency between correspondence from left to right
image, and correspondence computed in the opposite direction.

▪ A way to discard outlier correspondences.

• Sometimes wrong! E.g. Slanted plane: Matching between M pixels and N
pixels

Winner-Take-All is Fragile

• Recall, until now, we have assigned independent correspondences for each
window / pixel / region based purely on lowest SSD / NCC etc.

• But this can be fragile and ignore signs of erroneous correspondences:

▪ 1. A correspond to B, but B does not correspond to A.

▪ 2. Correspondences along a line might be completely jumbled.

▪ 3. Or, many points might all map to a single point.

• Technically, 2 and 3 are not implausible, and these might even be correct
correspondences, but this is very rare. And knowing this can allow us to
acquire better dense correspondences.

Solutions: Constrain the correspondences!

Rather than greedy pixelwise winner-take-all matching, we need to use more
“global” methods, imposing constraints

• Ordering constraint:

▪ Impose same matching order along scanlines

• Uniqueness constraint:

▪ Each pixel in one image maps to unique pixel in other

Can encode these constraints easily in dynamic programming

Ordering Constraint Illustration

… …

Left scanline Right scanline

Center of left camera Center of right camera

(NOTE: We’re depicting the actual image behind the camera, rather than the virtual image in front)

For illustration, we will assume no aggregation i.e. purely pixelwise

Ordering Constraint Illustration

… …

Left scanline Right scanline

Match

Match

MatchOcclusion Disocclusion

•Definition of
occlusion/disocclusion
depends on which image is
considered the reference
• Moving from left to right:
Pixels that “disappear” are
occluded; pixels that
“appear” are disoccluded

Ordering Constraint Illustration

Three cases:
▪Sequential – cost of match
▪Occluded – cost of no match
▪Disoccluded – cost of no match

Left scanline

Right scanline

Occluded Pixels

Disoccluded Pixels

For matching the two scanlines in an orderly way, we can assume monotonicity*.
If pixel 𝑖 matches to 𝑖′, then 𝑗 > 𝑖 can only match to some 𝑗′ > 𝑖′.

Overview: Stereo Matching with Dynamic Programming

Occluded Pixels

Left scanline

D
is-o

c
clu

d
e
d
 P

ix
els

Right scanline

Start

End

Given cost definitions for
matches, skips, etc., dynamic
programming searches for
the optimal lowest-cost path
through grid, producing
improved correspondences!

Matched, move diagonally
no matching pixel found,
move right

new unmatched pixels,
move down

This is no longer greedy matching; it optimizes “globally” within scanlines.

Ordering Constraint is Sometimes Wrong!

• Ordering constraint is often violated with thin structures in the
foreground.

A

pole

A

pole

Alternative dense shape representations

Beyond depth maps and point clouds

• We have seen so far:

Hernandez and Furakawa, 2015

Beyond depth maps and point clouds

• But there are more sophisticated ways to represent 3D shape:

Hernandez and Furakawa, 2015

(e.g. signed
distance function
fields)

(lots of work from the graphics community on converting
point clouds into compact mesh models)

Beyond depth maps and point clouds

Hernandez and Furakawa, 2015

The Rest of the Multi-View Stereo Pipeline

• Selecting the right images where some 3D point of interest is consistently
visible: Visibility Estimation

Hernandez and Furakawa, 2015

Visibility Estimation

• In the techniques above, like plane-sweep MVS, we assumed we could see
the same point in all images. Otherwise, a view with an occluded point
could cause high variance even at the correct depth plane.

• Particularly critical when scaling to large numbers (e.g. millions) of images.

Hernandez and Furakawa, 2015

Finding Clusters of Images to Scale MVS
• For each image being considered as a “reference”, create a “cluster” of

views of computationally tractable size that:

▪ Overlap in terms of visible points, and

▪ Provide informative viewpoints for precise triangulation

• To achieve these two criteria, we consider:

▪ Number of matched points between view pairs (more => higher
overlap),

▪ How far away the cameras are in space (larger baselines => better
triangulation)

• Then solve MVS within each cluster, and combine.

• Finally, to keep the number of clusters computationally tractable, carefully
select diverse reference views that maximize coverage, and only form
clusters for them. i.e. not every image gets to be a reference view.

View Clusters in Large-Scale MVS

Yasutaka Furukawa, Brian Curless, Steven M. Seitz, and Richard
Szeliski. Towards Internet-scale multiview stereo. CVPR 2010.

Iterative Visibility Estimation

• There is a chicken-and-egg problem in visibility estimation and geometry
reconstruction.

▪ So, above, we discussed how the initial SfM scene geometry + cameras
can be used to select view clusters for MVS

▪ But this can repeat: more fine-grained visibility estimation, and in turn,
improved MVS, can come from iterating between running MVS, and
then using the currently reconstructed scene geometry to compute
occlusions, and repeating.

Taking stock of what we’ve covered in this course

The Ground We’ve Covered: 1-View Geometry

Parallel-ness of
world lines + image
correspondences of
those lines

3D point locations +
image point
correspondences

Distances of world
collinear points +
point
correspondences

Planarity of points +
point
correspondences

kn
o

w
le

d
ge

Vanishing Points Length ratios

Homographies

Virtual billboards

Camera extrinsicsCamera intrinsics

Projecting AR objects

In this case, inferring geometry relies on some knowledge

The Ground We’ve Covered: 2-View Geometry

2-D point
correspondences
between 2 views

Essential matrix

Image stitching

Camera in-place
rotation (homography)

Camera rotation Camera translation

Optical flow

Feature matching

3D scene feature
depths

The Ground We’ve Covered: Multi-View Geometry

Camera extrinsics

3D scene depths

2-D point
correspondences

between many
views

Optical flow

Feature matching

geometry-based correspondence mining in ORB-SLAM

stereo correspondences along epipolar lines

2-view SfM -> incremental multi-view SfM-based odometry

bundle adjustment

Another view of what we’ve done

Images/Video Features Grouping into lines/curves

Correspondences/Optical Flow

Rigid Motion Groupings/Inliers

3D-3D pose 2D-3D pose 2D-2D SfM

Bundle Adjustment/ Visual Odometry / SLAM

World map/ Landmarks Global Camera Poses

An example of a combined system (slide 1)

Input: a large collection of unordered images

1. First find SIFT feature correspondences among them (efficient methods)

2. Then, find overlapping image pairs (geometric verification using
homographies / essential matrices)

3. Then run 2-view SfM using carefully selected initial views based on
overlap. (lots of heuristics here)

4. Solve PnP to find extrinsics for new images, registering them to current
3D structure (good view selection may be critical here)

5. Using these newly registered images, triangulate to improve current 3D
points, plus add new points into the 3D scene.

6. Run bundle adjustment, and potentially go back to step 4 to add other
images..

Based on ColMap Output: sparse 3D point cloud, and registered cameras

	Slide 1: CIS 5800 Machine Perception
	Slide 2: Our strategy
	Slide 3
	Slide 4: Plane-Sweep Stereo
	Slide 5: Plane-Sweep Stereo
	Slide 6: Plane-Sweep Stereo
	Slide 9: Plane-Sweep Stereo
	Slide 10: Plane-Sweep Stereo
	Slide 11: Another example
	Slide 12: Cost Volumes -> Depth Maps
	Slide 13: Fusing multiple depth maps
	Slide 14: Note on Visibility in MVS
	Slide 15
	Slide 16: Components of Stereo Correspondence Matching
	Slide 17
	Slide 18: Window Matching for Stereo Correspondence Finding
	Slide 20: Popular window matching scores beyond SSD
	Slide 21: NCC Injects Some Invariance
	Slide 22: False Positives in NCC
	Slide 26: Components of Stereo Correspondence Matching
	Slide 27
	Slide 29: Winner-Take-All is Fragile
	Slide 30: Left-Right Consistency Checking
	Slide 31: Winner-Take-All is Fragile
	Slide 32: Solutions: Constrain the correspondences!
	Slide 34: Ordering Constraint Illustration
	Slide 35: Ordering Constraint Illustration
	Slide 36: Ordering Constraint Illustration
	Slide 37: Overview: Stereo Matching with Dynamic Programming
	Slide 38: Ordering Constraint is Sometimes Wrong!
	Slide 39
	Slide 40: Beyond depth maps and point clouds
	Slide 41: Beyond depth maps and point clouds
	Slide 42: Beyond depth maps and point clouds
	Slide 46
	Slide 47: The Rest of the Multi-View Stereo Pipeline
	Slide 48: Visibility Estimation
	Slide 50: Finding Clusters of Images to Scale MVS
	Slide 51: View Clusters in Large-Scale MVS
	Slide 52: Iterative Visibility Estimation
	Slide 53
	Slide 54: The Ground We’ve Covered: 1-View Geometry
	Slide 55: The Ground We’ve Covered: 2-View Geometry
	Slide 56: The Ground We’ve Covered: Multi-View Geometry
	Slide 57: Another view of what we’ve done
	Slide 58: An example of a combined system (slide 1)

