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Our strategy

• First deal with dense correspondence finding for the frontoparallel 2-
camera case

• Then see how to “rectify” non-frontoparallel cameras to be frontoparallel.

• Then, how to perform multi-view stereo (MVS)

▪ Straightforward multi-baseline extension of 2-view stereo

▪ The “plane sweep” technique for MVS 

• Finally, improvement through dynamic programming. 



Plane Sweep



Plane-Sweep Stereo
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An efficient way to compute multi-view stereo



Plane-Sweep Stereo
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Plane-Sweep Stereo
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Proposed point at 
incorrect depth

Photo-inconsistent projections



Plane-Sweep Stereo

• At each iteration, we pretend that each camera’s entire image was of a single plane at 
depth 𝑧 from the reference camera, and backproject onto that plane from each camera, 
and see how much the neighbors agree, for each pixel. 

• When neighbors agree at a pixel, that pixel is likely to have depth 𝒛𝟎. The pixel’s “cost” 
for depth 𝒛 is the variance over neighbor backprojections.

• Then 𝑧 is incremented and the next iteration begins!
• At the end of the “sweep” over 𝑧, the min-cost 𝑧 is selected for each pixel, to form the 

full dense depth map

reference camera

neighbor camera 1 neighbor camera 2



Plane-Sweep Stereo

Reference image Right neighborLeft neighbor

Left neighbor projected into 
reference camera’s Z=z plane

Right neighbor projected into 
reference camera’s Z=z plane

Average image on the reference 
camera’s Z=z plane

Blurriness in the average images => more disagreement.

Gifs show 
increasing 
depth𝑧



Reference image Right neighborLeft neighbor

Planar image reprojections swept 
over depth (averaged)

Another example



Reference image

Single pixel’s cost 
profile

depth

cost

Full cost volume

Depth map 
solver

(Belief propagation, 
graph cuts, etc.)

Cost Volumes -> Depth Maps



Fusing multiple depth maps

• Compute depth map per image

• Fuse the depth maps into a 3D model

Figures by Carlos Hernandez



Note on Visibility in MVS

• When backprojecting in this fashion and measuring disagreement to check 
for whether a point is at the right depth plane, we are assuming that 
disagreement can only arise from projecting to the wrong depth. 

• In reality, other possibilities:

▪ specular/shiny objects that might look different from different angles

▪ Occlusions! Not every point is even visible in every camera to start with, 
so often MVS requires jointly estimating visibility *and* dense 
correspondences. 

▪ For example, if there is large agreement among one subset of views, 
but large disagreement among others, this may indicate occlusion in 
the other views.



Improved Techniques for Multi-view Stereo



Components of Stereo Correspondence Matching

• Matching criterion (error function)

▪ Quantify similarity of pixels

▪ Options: direct RGB intensity difference (SSD based), NCC etc.

• Aggregation method

▪ How error function is accumulated

▪ Options: Pixelwise, edgewise, window-wise, segment-wise …

• Optimization and winner selection

▪ Examples: Winner-take-all, dynamic programming, graph cuts, belief 
propagation



Alternatives to SSD based matching 



Window Matching for Stereo Correspondence Finding

Carlos Hernandez and Yasutaka Furakawa, 2015

Note: these are unrectified 
images, so epipolar lines are not 
horizontal, but in practice, 
matching is done after 
rectification.

𝑊𝑖

Searching for matching 
𝑊𝑗  along epipolar lines



Popular window matching scores beyond SSD

• SSD (Sum of Squared Differences)

• SAD (Sum of Absolute Differences)

• ZNCC (Zero-mean Normalized Cross Correlation), sometimes just “NCC”

▪ where          



NCC Injects Some Invariance
• NCC instead of SSD helps account for the fact that pixels might not be 

exactly same, because images have been captured with different 
illumination / from different cameras.
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False Positives in NCC
But the invariance in NCC can also produce more “false positives”, because it 
can be too forgiving on mismatched patches.

?



Components of Stereo Correspondence Matching

• Matching criterion (error function)

▪ Quantify similarity of pixels

▪ Options: direct RGB intensity difference (SSD based), NCC etc.

• Aggregation method

▪ How error function is accumulated

▪ Options: Pixelwise, edgewise, window-wise, segment-wise …

• Optimization and winner selection

▪ Examples: Winner-take-all, dynamic programming, graph cuts, belief 
propagation



Doing better than “Winner-Take-All” matching



Winner-Take-All is Fragile

• Recall, until now, we have assigned independent correspondences for each 
window / pixel / region based purely on lowest SSD / NCC etc.

• But this can be fragile and ignore signs of erroneous correspondences:

▪ 1. A correspond to B, but B does not correspond to A.



Left-Right Consistency Checking

• Can check for consistency between correspondence from left to right 
image, and correspondence computed in the opposite direction.

▪ A way to discard outlier correspondences.

• Sometimes wrong! E.g. Slanted plane: Matching between M pixels and N 
pixels



Winner-Take-All is Fragile

• Recall, until now, we have assigned independent correspondences for each 
window / pixel / region based purely on lowest SSD / NCC etc.

• But this can be fragile and ignore signs of erroneous correspondences:

▪ 1. A correspond to B, but B does not correspond to A.

▪ 2. Correspondences along a line might be completely jumbled. 

▪ 3. Or, many points might all map to a single point.

• Technically, 2 and 3 are not implausible, and these might even be correct 
correspondences, but this is very rare. And knowing this can allow us to 
acquire better dense correspondences. 



Solutions: Constrain the correspondences!

Rather than greedy pixelwise winner-take-all matching, we need to use more 
“global” methods, imposing constraints

• Ordering constraint:

▪ Impose same matching order along scanlines

• Uniqueness constraint:

▪ Each pixel in one image maps to unique pixel in other

Can encode these constraints easily in dynamic programming



Ordering Constraint Illustration

… …

Left scanline Right scanline

Center of left camera Center of right camera

(NOTE: We’re depicting the actual image behind the camera, rather than the virtual image in front)

For illustration, we will assume no aggregation i.e. purely pixelwise



Ordering Constraint Illustration

… …

Left scanline Right scanline

Match

Match

MatchOcclusion Disocclusion

•Definition of 
occlusion/disocclusion 
depends on which image is 
considered the reference
• Moving from left to right:
Pixels that “disappear” are 
occluded; pixels that 
“appear” are disoccluded



Ordering Constraint Illustration

Three cases:
▪Sequential – cost of match
▪Occluded – cost of no match
▪Disoccluded – cost of no match

Left scanline

Right scanline

Occluded Pixels

Disoccluded Pixels

For matching the two scanlines in an orderly way, we can assume monotonicity*.
If pixel 𝑖 matches to 𝑖′, then 𝑗 > 𝑖 can only match to some 𝑗′ > 𝑖′. 



Overview: Stereo Matching with Dynamic Programming
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Given cost definitions for 
matches, skips, etc., dynamic 
programming searches for 
the optimal lowest-cost path 
through grid, producing 
improved correspondences!

Matched, move diagonally
no matching pixel found, 
move right 

new unmatched pixels, 
move down

This is no longer greedy matching; it optimizes “globally” within scanlines.



Ordering Constraint is Sometimes Wrong!

• Ordering constraint is often violated with thin structures in the 
foreground.

A

pole

A

pole



Alternative dense shape representations



Beyond depth maps and point clouds

• We have seen so far:

Hernandez and Furakawa, 2015



Beyond depth maps and point clouds

• But there are more sophisticated ways to represent 3D shape:

Hernandez and Furakawa, 2015

(e.g. signed 
distance function 
fields)

(lots of work from the graphics community on converting 
point clouds into compact mesh models)



Beyond depth maps and point clouds

Hernandez and Furakawa, 2015





The Rest of the Multi-View Stereo Pipeline

• Selecting the right images where some 3D point of interest is consistently 
visible: Visibility Estimation

Hernandez and Furakawa, 2015



Visibility Estimation

• In the techniques above, like plane-sweep MVS, we assumed we could see 
the same point in all images. Otherwise, a view with an occluded point 
could cause high variance even at the correct depth plane.

• Particularly critical when scaling to large numbers (e.g. millions) of images.

Hernandez and Furakawa, 2015



Finding Clusters of Images to Scale MVS
• For each image being considered as a “reference”, create a “cluster” of 

views of computationally tractable size that:

▪ Overlap in terms of visible points, and 

▪ Provide informative viewpoints for precise triangulation

• To achieve these two criteria, we consider:

▪ Number of matched points between view pairs (more => higher 
overlap), 

▪ How far away the cameras are in space (larger baselines => better 
triangulation) 

• Then solve MVS within each cluster, and combine.

• Finally, to keep the number of clusters computationally tractable, carefully 
select diverse reference views that maximize coverage, and only form 
clusters for them. i.e. not every image gets to be a reference view. 



View Clusters in Large-Scale MVS

Yasutaka Furukawa, Brian Curless, Steven M. Seitz, and Richard 
Szeliski. Towards Internet-scale multiview stereo. CVPR 2010.



Iterative Visibility Estimation

• There is a chicken-and-egg problem in visibility estimation and geometry 
reconstruction.

▪ So, above, we discussed how the initial SfM scene geometry + cameras 
can be used to select view clusters for MVS

▪ But this can repeat: more fine-grained visibility estimation, and in turn, 
improved MVS, can come from iterating between running MVS, and 
then using the currently reconstructed scene geometry to compute 
occlusions, and repeating.



Taking stock of what we’ve covered in this course



The Ground We’ve Covered: 1-View Geometry

Parallel-ness of 
world lines + image 
correspondences of 
those lines

3D point locations + 
image point 
correspondences

Distances of world 
collinear points + 
point 
correspondences

Planarity of points + 
point 
correspondences

kn
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d
ge

Vanishing Points Length ratios

Homographies

Virtual billboards

Camera extrinsicsCamera intrinsics

Projecting AR objects

In this case, inferring geometry relies on some knowledge



The Ground We’ve Covered: 2-View Geometry

2-D point 
correspondences 
between 2 views

Essential matrix

Image stitching

Camera in-place 
rotation (homography)

Camera rotation Camera translation

Optical flow

Feature matching

3D scene feature 
depths



The Ground We’ve Covered: Multi-View Geometry

Camera extrinsics

3D scene depths

2-D point 
correspondences 

between many 
views

Optical flow

Feature matching

geometry-based correspondence mining in ORB-SLAM

stereo correspondences along epipolar lines

2-view SfM -> incremental multi-view SfM-based odometry

bundle adjustment



Another view of what we’ve done

Images/Video Features Grouping into lines/curves

Correspondences/Optical Flow

Rigid Motion Groupings/Inliers

3D-3D pose 2D-3D pose 2D-2D SfM

Bundle Adjustment/ Visual Odometry / SLAM

World map/ Landmarks Global Camera Poses



An example of a combined system (slide 1)

Input: a large collection of unordered images

1. First find SIFT feature correspondences among them (efficient methods)

2. Then, find overlapping image pairs (geometric verification using 
homographies / essential matrices)

3. Then run 2-view SfM using carefully selected initial views based on 
overlap. (lots of heuristics here)

4. Solve PnP to find extrinsics for new images, registering them to current 
3D structure (good view selection may be critical here)

5. Using these newly registered images, triangulate to improve current 3D 
points, plus add new points into the 3D scene.

6. Run bundle adjustment, and potentially go back to step 4 to add other 
images..

Based on ColMap Output: sparse 3D point cloud, and registered cameras
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