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Administrivia

Homework 5 (optional, 6 points for grade compensation) has been released. It and the 
small projects are due on May 14.

Final exam coming up
 Date reminder: Wednesday May 7, 3-5pm in DRLB A1. (Info is on courses.upenn.edu)
 Syllabus: Mainly the material covered in class after Wed March 19 (not covered by 

mid-term exam). 
 Review lecture in the last class on Wed April 30. 
 If you are unable to attend the midterm exam in person on May 7, please complete 

the form by April 30: https://forms.gle/JwaAxrKGfBzoo6z77
 Also, you need to contact the Weingarten Office for academic accommodations and 

send me the paperwork or approval from the Weingarten Office. 

http://courses.upenn.edu/
https://weingartencenter.universitylife.upenn.edu/academic-accommodations/


Putting the class in perspective in the context of computer vision
and a quick overview of “visual recognition”



Source: S. Lazebnik

What Info can be Extracted from Images?
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ML in Computer Vision
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The old: Mid 1990’s – 2012

Image → hand-def. features → learned classifier

The very old: 1960’s - Mid 1990’s

Image → hand-def. features → hand-def. classifier



What Should Good Visual Features Do?

What is a “good”
feature space?

?

cat

running

tongue

lawn

…Good features make useful tasks easy to perform.



What Should Good Visual Features Do?

𝐷𝐷-length 
feature 𝒙𝒙

Image

?

How should we produce such good features?

ML 
model “Dog”



Most Feature Extraction Frameworks Pre-2012

Step 1: Focus on “interest points” rather than all pixels
E.g. corner points, “difference of gaussians”, or even a uniform grid

Step 2: Compute features at interest points.
E.g. “SIFT”, “HOG”, “SURF”, “GIST”, etc.

Step 3: Convert to fixed-dimensional feature vector by measuring 
statistics of the features such as histograms

E.g. “Bag of Words”, “Spatial Pyramids”, etc.

…

Bag-of-Words histogram

Use your favorite ML model now!

See libraries like VLFeat and OpenCV



Machine Learning for Semantic Computer Vision
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The old: Mid 1990’s – 2012

Image → hand-def. features → learned classifier

The very old: 1960’s - Mid 1990’s

Image → hand-def. features → hand-def. classifier

The new: 2012 – ?

Image → jointly learned features + classifier with
“deep” multi-layer neural networks



“Deep” Learning

“Deep” multi-layer neural networks are representation learners. 
Every layer improves upon its preceding layer, tailoring the representation to the task.

𝐷𝐷-length 
feature 𝒙𝒙

Image

“dog”



Some sample applications of semantic vision
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Object detection

Pose detection (regression)

Semantic segmentation

Examples courtesy Jia-Bin Huang

http://www.cs.berkeley.edu/%7Erbg/papers/r-cnn-cvpr.pdf
http://www.cs.berkeley.edu/%7Ejonlong/long_shelhamer_fcn.pdf
http://arxiv.org/pdf/1312.4659v3.pdf


Some sample applications of semantic vision
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Similarity metric learning
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Low-level image processing: 
(superresolution, deblurring, 

image quality etc.)

Examples courtesy Jia-Bin Huang

http://www.cs.berkeley.edu/%7Erbg/papers/r-cnn-cvpr.pdf
http://arxiv.org/pdf/1412.6537v2.pdf
http://www.cs.berkeley.edu/%7Erbg/papers/r-cnn-cvpr.pdf
http://personal.ie.cuhk.edu.hk/%7Eccloy/files/eccv_2014_deepresolution.pdf


Game playing from visual inputs
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CNN + Reinforcement learning
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http://www.nature.com/nature/journal/v529/n7587/pdf/nature16961.pdf
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html


Generating art
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See if you can tell 
artists’ originals 
from machine 
style imitations at: 
http://turing.deepa
rt.io/

Paper: Gatys et al, “Neural ... Style”, arXiv ‘15
Code (torch): https://github.com/jcjohnson/neural-style

http://turing.deepart.io/
http://turing.deepart.io/
http://arxiv.org/abs/1508.06576
https://github.com/jcjohnson/neural-style


Where to learn more about ML and semantic vision?

Machine learning courses:
CIS 519, 520, 522 usually cover semantic computer vision briefly, as an application domain for 
machine learning techniques

CIS 581 Computer Vision & Computational Photography
The basics of image processing and semantic computer vision.

CIS 680 Advanced Machine Perception
Cutting-edge techniques in semantic (largely) computer vision, best taken after some 
introduction to ML.

CIS 7000 Advanced Topics





There is lots of ML in geometric vision too!

(The following slides are based on materials from Ben 
Mildenhall, Vincent Sitzmann and Stephen Lombardi)



Neural Scene Representation and Neural 
Rendering

3D Reconstruction Image-based 3D Reconstruction

Computer Graphics Rendering

20

3D Reconstruction Image SynthesisImage Loss

Scene 
Representation

Neural Rendering



Neural Radiance Fields (NeRF)

Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, Ng
ECCV 2020



Neural Volumetric Rendering



Neural Volumetric Rendering
querying the radiance value 
along rays through 3D space

What colour?



Neural Volumetric Rendering
continuous, differentiable 
rendering model without 

concrete ray/surface intersections



Neural Volumetric Rendering
using a neural network as a 
scene representation, rather 

than a voxel grid of data

Scene 
properties(x, y, z)



Inputs: sparse, unstructured 
photographs of a scene

Outputs: representation allowing us to 
render new views of that scene

…



Overview

‣ Volumetric rendering math

‣ Neural networks as representations for spatial data

‣ Neural Radiance Fields (NeRF)

‣ NeRF improvements and extensions



Traditional volumetric rendering

‣ Theory of volume rendering co-opted from physics in the 
1980s: absorption, emission, out-scattering/in-scattering

‣ Adapted for visualising medical data and linked with 
alpha compositing

‣ Modern path tracers use sophisticated Monte Carlo 
methods to render volumetric effects
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Chandrasekhar 1950, Radiative Transfer
Kajia 1984, Ray Tracing Volume Densities
Levoy 1988, Display of Surfaces from Volume Data
Max 1995, Optical Models for Direct Volume Rendering
Porter and Duff 1984, Compositing Digital Images
Novak et al 2018, Monte Carlo methods for physically based volume rendering



Traditional volumetric rendering

‣ Theory of volume rendering co-opted from physics in the
1980s: absorption, emission, out-scattering/in-scattering

‣ Adapted for visualising medical data and linked with 
alpha compositing

‣ Modern path tracers use sophisticated Monte Carlo
methods to render volumetric effects
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Chandrasekhar 1950, Radiative Transfer
Kajia 1984, Ray Tracing Volume Densities
Levoy 1988, Display of Surfaces from Volume Data
Max 1995, Optical Models for Direct Volume Rendering
Porter and Duff 1984, Compositing Digital Images
Novak et al 2018, Monte Carlo methods for physically based volume rendering

Medical data visualisation 
[Levoy]

Alpha compositing [Porter and Duff]



Traditional volumetric rendering

‣ Theory of volume rendering co-opted from physics in the
1980s: absorption, emission, out-scattering/in-scattering

‣ Adapted for visualising medical data and linked with 
alpha compositing

‣ Modern path tracers use sophisticated Monte Carlo 
methods to render volumetric effects

11Novak et al 2018, Monte Carlo methods for physically based volume rendering

Chandrasekhar 1950, Radiative Transfer
Kajia 1984, Ray Tracing Volume Densities
Levoy 1988, Display of Surfaces from Volume Data
Max 1995, Optical Models for Direct Volume Rendering
Porter and Duff 1984, Compositing Digital Images

Physically-based Monte Carlo rendering [Novak et 
al]



Volumetric rendering and machine learning

Tulsiani et al 2017, Multi-view Supervision for Single-view Reconstruction via Differentiable Ray Consistency
Henzler et al 2019, Escaping Plato’s Cave: 3D Shape From Adversarial Rendering
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Zhou et al 2018, Stereo Magnification: Learning View Synthesis using Multiplane Images
Lombardi et al 2019, Neural Volumes: Learning Dynamic Renderable Volumes from 
Images

‣ Various volume-rendering-esque methods devised for 3D 
shape reconstruction methods

‣ Scaled up to higher resolution volumes to 
achieve excellent view synthesis results“Probabilistic” voxel grid rendering [Tulsiani et al]
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Volumetric rendering and machine learning

Tulsiani et al 2017, Multi-view Supervision for Single-view Reconstruction via Differentiable Ray 
Consistency
Henzler et al 2019, Escaping Plato’s Cave: 3D Shape From Adversarial RenderingZhou et al 2018, Stereo Magnification: Learning View Synthesis using Multiplane Images
Lombardi et al 2019, Neural Volumes: Learning Dynamic Renderable Volumes from 
Images

Slices from a volumetric scene 
representation [Zhou et al]

‣ Various volume-rendering-esque methods devised for 3D
shape reconstruction methods

‣ Scaled up to higher resolution voxel grids, ML methods 
can achieve excellent view synthesis results

√

View synthesis from a dynamic 
voxel grid [Lombardi et al]



Max and Chen 2010, Local and Global Illumination in the Volume Rendering Integral

Volumetric formulation for NeRF



Volumetric formulation for NeRF

Scene is a cloud of tiny colored particles

Max and Chen 2010, Local and Global Illumination in the Volume Rendering Integral



Volumetric formulation for NeRF

If a ray traveling through the scene hits a 
particle at t, we return its color c(t)

Camera

Ray r(t) =  o +  td



Volumetric formulation for NeRF

This notion is probabilistic: chance that ray 
stops in a small interval around t is σ(t) dt.

σ(t)  is known as the “volume density”

P[hit at t] =  σ(t) dt



Volumetric formulation for NeRF

To determine if t is the first hit, need to know T(t): 
probability that the ray didn’t hit any particles earlier.

T(t) is called “transmittance”

P[no hits before t] =  T(t)



Volumetric formulation for NeRF

To determine if t is the first hit, need to know T(t): 
probability that the ray didn’t hit any particles earlier.

T(t) is called “transmittance”
We assume σ is known and want to use it to calculate T(t)

P[no hits before t] =  T(t)



Volumetric formulation for NeRF

σ and T  are related by the probability fact that
P[no hits before t +  dt] =  P[no hits before t] × P[no hit at t]

P[no hits before t] =  T(t)
P[hit at t] =  σ(t) dt



Volumetric formulation for NeRF

These are related by the probability fact that
P[no hits before t +  dt] P[no hits before t]=  ×P[no hit at t]

P[no hits before t] =  T(t)
P[hit at t] =  σ(t) dt

T(t +  dt) T(t) (1 − σ(t)dt)



Volumetric formulation for NeRF

T(t +  dt) =  T(t)(1 − σ(t)dt)



Volumetric formulation for NeRF

T(t +  dt) =  T(t)(1 − σ(t)dt)

Split up differential ⇒ T(t) +  T′(t)dt =  T(t) − T(t)σ(t)dt



Volumetric formulation for NeRF

T(t +  dt) =  T(t)(1 − σ(t)dt)

Split up differential ⇒ T(t) +  T′(t)dt =  T(t) − T(t)σ(t)dt

Rearrange ⇒
T(t)
T′(t) dt =  − σ(t)dt



Volumetric formulation for NeRF

T(t +  dt) =  T(t)(1 − σ(t)dt)

Split up differential ⇒ T(t) +  T′(t)dt =  T(t) − T(t)σ(t)dt

Rearrange ⇒
T(t)
T′(t) dt =  − σ(t)dt

Integrate ⇒

⇒



Volumetric formulation for NeRF

Thus, the probability that a ray first hits a particle at t is



Volumetric formulation for NeRF



Approximating the nested integral

We use quadrature to approximate the nested integral,



We use quadrature to approximate the nested integral,
splitting the ray up into segments with endpoints {t1, t2, … ,  tn+1}

tn+1

ti

t1

n

Approximating the nested integral



We use quadrature to approximate the nested integral,
splitting the ray up into segments with endpoints {t1, t2, … ,  tn+1}

with lengths δi =  ti+1 − ti

tn+1

δi

ti

t1

n

Approximating the nested integral



We assume volume density and color are 
roughly constant within each interval

ti

Approximating the nested integral



This allows us to break the outer integral

into a sum of analytic integrals

Approximating the nested integral



This allows us to break the outer integral 
into a sum of analytically tractable integrals

Approximating the nested integral



Catch: piecewise constant density and color
do not imply constant transmittance!

Approximating the nested integral



Catch: piecewise constant density and color
do not imply constant transmittance!

Important to account for how early part of a 
segment blocks later part when is high

Approximating the nested integral



Approximating the nested integral



Approximating the nested integral



Approximating the nested integral



Approximating the nested integral



Approximating the nested integral



Approximating the nested integral



Approximating the nested integral



Summary: volume rendering integral estimate

3D volume

Camera

Ray

tn+1

t1 Ti

αi

ti



Summary: volume rendering integral estimate

3D volume

Camera

Ray

tn+1

t1 Ti

αi

ti

How do we store the values of
c, at each point in space?



Overview

‣ Volumetric rendering math

‣ Neural networks as representations for spatial data

‣ Neural Radiance Fields (NeRF)

‣ NeRF improvements and extensions



Toy problem: storing 2D image data

(x, y) (r, g, b)

Usually we store an image as a 
2D grid of RGB color values



Toy problem: storing 2D image data

FΩ

(x, y) (r, g, b)

What if we train a simple fully-connected 
network (MLP) to do this instead?



Naive approach fails!



Problem:

“Standard” coordinate-based MLPs cannot represent high-
frequency functions



Solution:

Pass input coordinates through a 
high frequency mapping first



Input coordinate mapping

‣ Simple formula: apply a tall skinny matrix B to input coordinate vector x, 
then pass through sin and cos:

‣ Passing network a subset of the Fourier basis functions. Same effect from:
‣ Positional encoding
‣ Fourier features
‣ SIREN



Problem solved



Overview

‣ Volumetric rendering math

‣ Neural networks as representations for spatial data

‣ Neural Radiance Fields (NeRF)

‣ NeRF improvements and extensions



NeRF = volume rendering + 
coordinate-based network



(x, y, z, θ, ϕ) (r, g, b, σ)

FΩ



∥2

Train network to reproduce input views of scene 
using gradient descent

Volume rendering 
applied to MLP

∇∥ −
Ground truth

image



Visualizing view-dependent effects

70
Regular NeRF rendering Manipulating input viewing directions



Visualizing learned density field as geometry

Regular NeRF rendering Expected ray termination depth



Visualizing learned density field as geometry

Regular NeRF rendering Expected ray termination depth



If you’re interested, you may take: CIS 7000-005 Introduction to Neural Scene Representation 
and Neural Rendering, in Fall 2025. 


