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Basic Perspective Projection Equations
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Place in the Hierarchy of Transformations

Projective



Projective Geometry

Based on slides by Jianbo Shi,  Hyun Soo Park,  Kostas Daniilidis



Projective geometry  Euclidean interpretation

In the Euclidean interpretation, we treat 𝑤𝑤 as the third spatial coordinate.
• The 𝑤𝑤 axis is a scaled version of the principal axis 𝑍𝑍 (in camera-centric 

coordinates).
• The image plane is 𝑤𝑤 = 1, same as 𝑍𝑍 = 𝑓𝑓
• 𝑤𝑤 = 0 is the same as 𝑍𝑍 = 0. Parallel to image plane, passing through 

camera center.
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Projective Space Euclidean Space



Projective lines
• What does a line in the image correspond to in projective space?

• A line is a plane of rays through origin
– all rays (𝑥𝑥,𝑦𝑦,𝑤𝑤) satisfying:  𝑎𝑎𝑥𝑥 +  𝑏𝑏𝑦𝑦 +  𝑐𝑐𝑤𝑤 =  0

𝑎𝑎 𝑏𝑏 𝑐𝑐
𝑥𝑥
𝑦𝑦
𝑤𝑤

= 0

𝒍𝒍𝑻𝑻 𝒙𝒙 = 0



Projective Lines

𝑙𝑙 = 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 + 𝑐𝑐𝑤𝑤 = 0

Q: what is the relationship 
between 𝑙𝑙 = 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 𝑇𝑇 and 
the plane?

A: It is perpendicular to the 
plane.



Point at infinity / “ideal” points
• Ideal point (“point at infinity”)
 p ≅ (𝑥𝑥,𝑦𝑦, 0) – rays through camera center parallel to image plane
 It has infinite image coordinates

(𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦,0)

y
x w

image plane



Point at infinity / “ideal” points

(x1,x2,0)

“Ideal” pointsLooking-at direction



“Line at infinity”

• A line passing through all ideal points i.e. points at infinity:

• Because :

𝒍𝒍∞



Da Vinci’s ”The Last Supper” c. 1495-98. http://pennpaint.blogspot.com/

Vanishing points

A vanishing point is a 
point on the image plane 
of a perspective 
rendering where the 
two-dimensional 
perspective projections 
of mutually parallel lines 
in three-dimensional 
space appear to 
converge.





Where vanishing points come from

ZHCh8



image plane #1

image plane #2

The line connecting the camera origin and the vanishing point is parallel to all lines 
that share the same direction and converge at the vanishing point.



How Artists Find Vanishing Points
Find VP of a world line by:
- Standing at “camera center”.
- Holding arm out parallel to the 

world line.
- Noting its intersection with the 

”canvas” or image plane. i.e. the 
arm represents the light ray.

“Vanishing rays of a world line” 
(camera rays through the VP) are 
just rays parallel to that line, 
passing through the camera center.

http://www.joshuanava.biz/perspective/in-other-words-the-observer-simply-points-in-the-same-direction-as-the-lines-in-
order-to-find-their-vanishing-point.html



Perspective Projections are Linear in ℙ
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Recall:



Camera Projection Equation 

This assumes that: 
• the image coordinate system origin is the same as the “principal point” p where the 

principal / optical axis intersects image plane. Sometimes called “image center” 
• Points in the 3D world are known in the camera-centric coordinate system. 



Camera Coordinate System + Principal Point Offset

Projection 
in pixels

Z-axis is the 
optical axis

𝑢𝑢 = 𝑓𝑓
𝑋𝑋𝑐𝑐
𝑍𝑍𝑐𝑐

+ 𝑢𝑢0,  𝑣𝑣 = 𝑓𝑓
𝑌𝑌𝑐𝑐
𝑍𝑍𝑐𝑐

+ 𝑣𝑣0



Projection equation with image origin ≠ principal point 

𝜆𝜆
𝑢𝑢
𝑣𝑣
1

=
𝑓𝑓 𝑢𝑢0

𝑓𝑓 𝑣𝑣0
1

1 0
1 0

1 0

𝑋𝑋𝑐𝑐
𝑌𝑌𝑐𝑐
𝑍𝑍𝑐𝑐
1

 = 𝐾𝐾 𝐼𝐼 0 𝑿𝑿𝑐𝑐

𝑢𝑢 = 𝑓𝑓
𝑋𝑋𝑐𝑐
𝑍𝑍𝑐𝑐

+ 𝑢𝑢0,  𝑣𝑣 = 𝑓𝑓
𝑌𝑌𝑐𝑐
𝑍𝑍𝑐𝑐

+ 𝑣𝑣0

Z-axis is the 
optical axis



Generalizing intrinsics (1/2)

𝜆𝜆
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1

 = 𝐾𝐾 𝑅𝑅 𝒕𝒕 𝑿𝑿𝑤𝑤
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𝑅𝑅3×3 𝒕𝒕

𝑋𝑋𝑤𝑤
𝑌𝑌𝑤𝑤
𝑍𝑍𝑤𝑤
1

 = 𝐾𝐾 𝑅𝑅 𝒕𝒕 𝑿𝑿𝑤𝑤

1. If pixels are not square?



Generalizing intrinsics (2/2)

𝜆𝜆
𝑢𝑢
𝑣𝑣
1

=
𝑠𝑠𝑥𝑥 𝑢𝑢0

𝑠𝑠𝑦𝑦 𝑣𝑣0
1

𝑅𝑅3×3 𝒕𝒕

𝑋𝑋𝑤𝑤
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1

 = 𝐾𝐾 𝑅𝑅 𝒕𝒕 𝑿𝑿𝑤𝑤

1. If pixels are not square?

2. If “radial distortions”, then the intrinsics can no longer be 
represented as a linear operator any more



Parametrizing radial distortion in large field-of-view cameras

𝑢𝑢pre−distortion 𝑟𝑟 = 𝑢𝑢post−distortion 1 + 𝑘𝑘1𝑟𝑟2 + 𝑘𝑘2𝑟𝑟4 + 𝑘𝑘3𝑟𝑟6 + ⋯
𝑣𝑣pre−distortion 𝑟𝑟 = 𝑣𝑣post−distortion 1 + 𝑘𝑘1𝑟𝑟2 + 𝑘𝑘2𝑟𝑟4 + 𝑘𝑘3𝑟𝑟6 + ⋯

Then, correct for radial distortion:

Can choose the degree of the radial distortion to calibrate for. More => more 
accurate, but requires more images to fit well. 

where 𝑟𝑟 is the distance from a (usually unknown) image center location (𝑢𝑢0, 𝑣𝑣0).

Pre-distortion Post-distortion



Putting the pieces together: Projection matrix P

𝜆𝜆
𝑢𝑢
𝑣𝑣
1

=
𝑓𝑓 𝑢𝑢0

𝑓𝑓 𝑣𝑣0
1

𝑅𝑅3×3 𝒕𝒕

𝑋𝑋𝑤𝑤
𝑌𝑌𝑤𝑤
𝑍𝑍𝑤𝑤
1

 = 𝐾𝐾 𝑅𝑅 𝒕𝒕 𝑿𝑿𝑤𝑤

Convert world to camera coordinatescamera 3D coords to pixels



Perspective Projection in homogeneous coordinates

𝑃𝑃3×4 = 𝐾𝐾3×3 𝑅𝑅3×3 𝒕𝒕3×1]
“Intrinsics” “Extrinsics”“Camera 

projection 
matrix”

𝑥𝑥
𝑦𝑦
𝑤𝑤

= 𝑃𝑃3×4

𝑋𝑋
𝑌𝑌
𝑍𝑍
1



Applying extrinsics (and intrinsics) for 3D shape projection
Can do AR-style projection of a 3D object onto the world plane once the full 
extrinsics and intrinsics are known!  

IKEA App, image from WIRED.



Application of pose: projecting a solid shape into the world

• Our normal projection equations tell us how world points in world 
coordinates project onto a camera, given camera pose (𝑅𝑅,𝑇𝑇) and intrinsics 𝐾𝐾

𝒙𝒙~𝐾𝐾 𝑅𝑅 𝒕𝒕 𝑿𝑿𝒘𝒘



Application of pose: projecting a solid shape into the world

• Suppose the shape is expressed by the positions of points 𝑋𝑋𝑠𝑠 in a ”shape-
coordinate system”

Coordinate system attached to the object



Application of pose: projecting a solid shape into the world

• First find 𝑅𝑅𝑠𝑠𝑤𝑤 , 𝑡𝑡𝑠𝑠𝑤𝑤 that convert object-centric coordinates 𝑋𝑋𝑠𝑠 into world-
centric coordinates 𝑿𝑿𝑤𝑤 = 𝑅𝑅𝑠𝑠𝑤𝑤𝑿𝑿𝑠𝑠 + 𝒕𝒕𝑠𝑠𝑤𝑤 to place the object at the right 
place in the world. (Think: what do 𝑅𝑅𝑠𝑠𝑤𝑤  and 𝑡𝑡𝑠𝑠𝑤𝑤 mean exactly?) 

• Then just render the object points at 𝐾𝐾 𝑅𝑅 𝒕𝒕]𝑿𝑿𝒘𝒘



Projective Transformations
aka Collineations

aka Homographies
aka Projectivity



Example of Projective Transformation 
Common notations: 𝐻𝐻 
(Note that some books use A; however, we will avoid using A in this course, as A is commonly associated 
with Affine Transformations.)



Example of Projective Transformation 

• A 2D point before H is represented as (𝑋𝑋,𝑌𝑌) , after Projective 
transformation is (𝑢𝑢, 𝑣𝑣) : 

or



Projective Transformation = Homography 
= Collineation=Projectivity

𝐻𝐻𝐻𝐻

(𝐻𝐻)

𝐻𝐻

𝐻𝐻𝐻𝐻

𝐻𝐻𝐻𝐻 𝐻𝐻𝐻𝐻



Perspective Projection v.s. Projective Transformation

Perspective Projection Projective Transformation

Definition A mapping from 3D space to a 2D plane 
(e.g., camera image)

A general mapping between 
projective space (e.g., 𝑃𝑃2 to 𝑃𝑃2)

Mathematical Formula p′=K[R∣T]P p′=H⋅p
Input Space 𝑅𝑅3 (can also be 𝑃𝑃3) 𝑃𝑃𝑛𝑛  (typically 𝑃𝑃2 in this class) 

Output Space 𝑅𝑅2 (can also be 𝑃𝑃2) 𝑃𝑃𝑛𝑛 (typically 𝑃𝑃2 in this class) 

Applications Image formulation, 3D rendering Image registration, planar 
transformation, texture mapping



When Perspective Projection -> Projective Transformation?
A perspective camera projection of a plane (i.e., a camera image) is a projective 
transformation in ℙ𝟐𝟐



• Can we show that the perspective camera projection from ℙ3 → ℙ2 of a 
plane in the world is in fact a homography in ℙ2 (i.e., projective 
transformation from ℙ2 → ℙ2) when the world plane coordinates are 
expressed in ℙ2?

• Remember:

𝑥𝑥
𝑦𝑦
𝑤𝑤

~𝐾𝐾3×3 𝑅𝑅3×3 𝒕𝒕3×1]

𝑋𝑋
𝑌𝑌
𝑍𝑍
1

When Perspective Projection -> Projective Transformation?



Assume world plane 𝑍𝑍𝑤𝑤 = 0



The planar homography 
𝐻𝐻:ℙ2 → ℙ2

When Perspective Projection -> Projective Transformation?



Pose From Homography

The planar homography 
𝐻𝐻:ℙ2 → ℙ2

Computing the homography can tell 
us how the camera (and therefore, 
e.g. a robot attached to the camera) is 
oriented w.r.t. to a world plane! 
(assuming known K)

Q: Where do you get 𝒓𝒓3 from though?
A: 𝒓𝒓3 = 𝒓𝒓1 × 𝒓𝒓2



Localization w.r.t. known planes using homographies



Computing Homographies From 
4 Point Correspondences

“4-point collineation”



How can we compute the projective transformation between 
a known pattern and its projection?

and

Floor tiles measured in [m] Points in pixel coordinates



The result of such a transformation would map any point in one plane to 
the corresponding point in the other

and

Floor tiles measured in [m] Points in pixel coordinates

“correspondences”



(ℙ2 → ℙ2)

𝐻𝐻

𝑯𝑯

𝐻𝐻

𝐻𝐻𝐻𝐻

𝐻𝐻



How can we compute the projective transformation between 
a known pattern and its projection?

A is the image 
projection of the 
intersection of 
horizontal parallel 
lines (1,0,0). i.e. 
horizontal vanishing 
point

B is the image projection of the 
intersection of vertical parallel 
lines (0,1,0) .i.e. vanishing 
point in the vertical direction!

D

C

(1,0,1)
These are homogeneous coordinates to represent the 

known pattern in ℙ2



Cont.

Image Plane

World Plane

Parallel Lines

Vanishing 
Point

AB
B

xy
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𝑦𝑦𝑤𝑤
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A A’

B

C
C’
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Correspondences: 
(𝑷𝑷𝟐𝟐 →  𝑷𝑷𝟐𝟐)

c (0, 0, 1)

a

b

(1, 0, 0)

(0, 1, 0)

C



Side note: the first 2 columns of the homography are vanishing points!

𝐻𝐻

𝐻𝐻3×3

A B C

A’ B’ C’

~

3 variables



Solution: Introduce a 4th point correspondence D

A is the image 
projection of the 
intersection of 
horizontal parallel 
lines (1,0,0). i.e. 
horizontal vanishing 
point

B is the image projection of the 
intersection of vertical parallel 
lines (0,1,0) .i.e. vanishing 
point in the vertical direction!

D

C

(1,0,1)

Note: makes sense, because after all, A has 8 degrees of freedom, and 
each 2D point correspondence pins down 2DOF.

𝐻𝐻



Cont.

Image Plane

World Plane

Parallel Lines

Vanishing 
Point

AB
B

xy

𝑥𝑥𝑤𝑤

𝑦𝑦𝑤𝑤
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(𝑷𝑷𝟐𝟐 →  𝑷𝑷𝟐𝟐)
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(0, 1, 0)

D
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D’

D

D d D’ (1, 1, 1)



𝐻𝐻

~

~

𝐻𝐻3×3

or



Choosing the points to be the horizontal and vertical vanishing points 
(1,0,0), (0,1,0) plus origin (0,0,1) and the diagonal (1,1,1) is 

particularly “nice” especially if you have a square to start from, but 
really, any four non-collinear points will do.

(coming up next)

Four points, no three of them 
collinear, suffice to unambiguously 

recover a homography



What happens when the original set of points is not a square?

a

a’d

c

b

c
b’

c’

d’





General Form for Computing homographies



Converting to a linear system of equations

Two linear equations for 
each point correspondence!



Homography -> Virtual Billboards
• For virtual billboards, we just treat the desired billboard pattern as the 

world pattern. 
• Recall that the homography is a mapping from world to image pixel 

coordinates. So, just the homography can directly find the image pixel 
coordinate corresponding to every image in the world pattern. 



Homography -> Vanishing Points, Horizon



AB

XY

Homography columns are vanishing points

So the first two columns are two Orthogonal vanishing points



In essence, a projective geometry may be thought of as an extension of Euclidean 
geometry in which the "direction" of each line is subsumed within the line as an extra 
"point", and in which a "horizon" of directions corresponding to coplanar lines is 
regarded as a "line"

Horizon

Image Plane

World Plane

Parallel Lines

Vanishing 
Point

AB
B

xy

𝑥𝑥𝑤𝑤

𝑦𝑦𝑤𝑤

Projection center 

Camera

A’

B’

A
C

C’

D

C

D’

D
Horizon

Horizon



AB

XY

horizon

Equation of horizon: ℎ1 × ℎ2 𝑇𝑇
𝑥𝑥
𝑦𝑦
𝑧𝑧

= 0

We will encounter another way to derive this equation of the horizon very soon.



Projecting the line at infinity to compute the horizon
Points at infinity in the world plane look like 
𝑋𝑋,𝑌𝑌,𝑊𝑊 = 0 𝑇𝑇

The “line” connecting them is 𝑊𝑊 = 0, the 
“line at infinity”. The image of this line is 
the horizon, which contains all vanishing 
points. Expressed in world plane ℙ2, this 
line’s coefficients are 0,0,1 𝑇𝑇.

So if we could find the projection of this 
line, we could find the horizon

Image Plane

World Plane

Parallel Lines

B

𝑥𝑥𝑤𝑤

𝑦𝑦𝑤𝑤

Camera

A’

B’

A
C

C’

D

D’

Horizon



AB

XY

horizon

Vanishing rays/planes through the camera center are parallel to the world lines/planes
   

So, the horizon plane is parallel to the ground plane
and hence ℎ1 × ℎ2 is the normal to the ground plane!

Projection center 

Horizon plane = 
Vanishing plane = 
Viewing plane

World plane // 
vanishing plane 

World plane = Ground 
plane in this case

Summary



Using the horizon to orient the 
camera



Horizon gives complete info about how camera is oriented w.r.t. world plane*! 

Thumb rule: “If horizon is horizontal & central, camera is correctly vertical & 
principal axis is parallel to world plane**!”

*caveat: assuming known 𝐾𝐾
**caveat: assuming that principal axis passes through image center, and camera axes are horizontal. (usually approximately true)



Homography -> Camera Pose



Recap: Pose From Homography

The planar homography 
𝐻𝐻:ℙ2 → ℙ2

Computing the homography 
can tell us how the camera 
(and therefore, e.g. a robot 
attached to the camera) is 
oriented w.r.t. to a world 
plane! (assuming known K)

Q: Where do you get 𝒓𝒓3 from 
though? A: 𝒓𝒓3 = 𝒓𝒓1 × 𝒓𝒓2



Image Plane

World Plane

Parallel Lines

Vanishing 
Point

AB
B

xy

𝑥𝑥𝑤𝑤

𝑦𝑦𝑤𝑤

Projection center 

Camera

A’

B’

A
C

C’

D

C

D’

D
Horizon

Horizon

𝐻𝐻~𝐾𝐾(𝑟𝑟1, 𝑟𝑟2,𝑇𝑇)

𝐻𝐻~(𝑎𝑎, 𝑏𝑏, 𝑐𝑐)
𝑎𝑎~𝐾𝐾𝑟𝑟1, 𝑏𝑏~𝐾𝐾𝑟𝑟2



• We can get the rotation of camera from 2 orthogonal vanishing points on a 
plane, assuming known intrinsics matrix 𝐾𝐾.

𝐻𝐻~𝐾𝐾(𝑟𝑟1, 𝑟𝑟2,𝑇𝑇)

𝐻𝐻~(𝑎𝑎, 𝑏𝑏, 𝑐𝑐)
𝑎𝑎~𝐾𝐾𝑟𝑟1, 𝑏𝑏~𝐾𝐾𝑟𝑟2 𝑟𝑟1~𝐾𝐾−1𝑎𝑎, 𝑟𝑟2~𝐾𝐾−1𝑏𝑏 



But actually, not quite!

• According to the previous slide 𝐾𝐾 𝑟𝑟1 𝑟𝑟2 𝑇𝑇 = 𝐻𝐻, or in other words,
𝐾𝐾−1𝐻𝐻 = 𝑟𝑟1, 𝑟𝑟2,𝑇𝑇  and 𝑟𝑟3 = 𝑟𝑟1 × 𝑟𝑟2

If only life were so simple!
• Problem: when we estimate homographies (e.g. through solving linear 

systems with 2n equations from 𝑛𝑛 >= 4 point correspondences), and then 
compute 𝐾𝐾−1𝐻𝐻, we aren’t guaranteed to find a valid 𝑟𝑟1 and 𝑟𝑟2 pair. i.e. an 
orthonormal pair.
 So, we need to find a way to first “correct” 𝐾𝐾−1𝐻𝐻 3×3 to get 

orthonormal 𝑟𝑟1 and 𝑟𝑟2. Often called the “Procrustes”, or “special 
orthogonal (SO) Procrustes” problem.
 And we must solve this in real-time for robotics applications, so 

preferably an inexpensive approach.



The macabre Greek legend of Procrustes
We are trying to get every 𝐾𝐾−1𝐻𝐻  “traveler” to fit the “bed” of valid rotation 
matrices by stretching it or chopping it off.





(In case original columns were not even unit norm)

Kabsch algorithm for Procrustes

Proof in class notes, optional
proof in supp readings- Kabsch-Algorithm-RT-from-H-proof.pdf. We will also prove it in the next class. 



Full Kabsch algorithm for finding pose via homography

𝑎𝑎 𝑏𝑏 = 

Scale R to have determinant 1 if needed.

Alternative to running 
Kabsch including the 3rd 
column c = ℎ1′ × ℎ2′ as on 
last slide  



So now, camera pose (actually) known w.r.t world plane!



Vanishing Points -> intrinsics 𝐾𝐾



Horizon

O

Image Plane

Ground Plane

Parallel Lines

AB

90o

90o

Projection
Center O

90o

90o

90o

Q

EE

A

B



Let Q be the orthocenter of the triangle ABC

AB

90o

90o

Projection
Center O

90o

90o

90o

Q

Theorem from Euclidean Geometry:
If Q is the orthocenter of ABE and all 
three angles AOB, BOE, and EOA are right 
angles , the OQ is perpendicular to ABE plane!

OQ is the principal axis and ABE is 
the image plane, hence, Q is the 
principal point / “image center”

E



Summary

• If we have 3 orthogonal VPs, we can get full intrinsics K (focal length and 
image center), and also extrinsics R. 
   What’s missing? Just the translation t. 
 And that information is not contained in VPs, because camera translations don’t 

affect the VPs!
 Which is why, when we found homographies (that do contain full information 

about translation), we used more than just VPs.



Cross Ratios & Length Measurements from Single 
Images (“Single View Metrology”)



A’
B’

C’

D’Horizon

(Think 𝐴𝐴𝐴𝐴
∞

: 𝐵𝐵𝐴𝐴
∞

= 𝐴𝐴𝐴𝐴
𝐵𝐵𝐴𝐴

× ∞
∞

= 𝐴𝐴𝐴𝐴
𝐵𝐵𝐴𝐴

 )

What happens when one of the points is at infinity?

?



Pose from Point Correspondences,
the Perspective N Point Problem (PnP)



Localization by observing known 3D points from the world?

A real problem for autonomous cars, for example! 
GPS: ~ a few feet accuracy. Just not good enough.

Instead, autonomous cars rely on 3D maps of the world to localize!



The Perspective 3-Point Problem

Jingnan Shi, https://jingnanshi.com/blog/pnp_minimal.html

• Given the point correspondences, find camera pose 𝑅𝑅,𝑇𝑇

What are the differences from 4-Point Algorithm?

https://jingnanshi.com/blog/pnp_minimal.html


P3P v.s. Homography

• Why P3P needs only three point correspondences, while computing 
Homography needs four point correspondences?



A triangle’s world coordinates 𝑷𝑷𝒊𝒊 
are known, and its pixel 
coordinates are known

𝑃𝑃1

𝑃𝑃2𝑃𝑃3

Known angles

camera

P3P from Pixels



Pixels → “Calibrated coordinates”

RGB images only provide pixel coordinates 𝑢𝑢, 𝑣𝑣 for each vertex, not 
camera-centric 3D coordinates. Convert these to:

“Calibrated coordinates”: 𝒑𝒑𝒊𝒊~ 𝐾𝐾−1 𝑢𝑢𝑖𝑖 𝑣𝑣𝑖𝑖 1 𝑇𝑇

These are essentially image plane coordinates with principal point 
as origin, and focal length set to 1.

Euclidean interpretation: 𝒑𝒑𝒊𝒊 is a vector in camera coordinates, 
originating from the camera center and pointing toward the 3D 
point corresponding to pixel coordinates (𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖).



The P3P problem: Find 𝜆𝜆𝑖𝑖 ,𝑅𝑅,𝑇𝑇 such that
𝜆𝜆1𝐻𝐻1 = 𝑅𝑅𝑃𝑃1 + 𝑇𝑇
𝜆𝜆2𝐻𝐻2 = 𝑅𝑅𝑃𝑃2 + 𝑇𝑇
𝜆𝜆3𝐻𝐻3 = 𝑅𝑅𝑃𝑃3 + 𝑇𝑇

A triangle’s world coordinates 𝑷𝑷𝒊𝒊 
are known, and its camera-
centric calibrated coordinates 𝒑𝒑𝒊𝒊 
are known

𝑃𝑃1

𝑃𝑃2𝑃𝑃3

Known angles

camera

P3P from Pixels Calibrated Coordinates

Q: Are 𝜆𝜆𝑖𝑖 the same as “depths” 𝑑𝑑𝑖𝑖?
A: No, because 𝐻𝐻𝑖𝑖 are not unit vectors.



The P3P problem: Find 𝑑𝑑𝑖𝑖 ,𝑅𝑅,𝑇𝑇 such that
𝑑𝑑𝑖𝑖

||𝐻𝐻𝑖𝑖||2
𝐻𝐻𝑖𝑖 = 𝑅𝑅𝑃𝑃𝑖𝑖 + 𝑇𝑇,  ∀𝑖𝑖 = 1,2,3

A triangle’s world coordinates 𝑷𝑷𝒊𝒊 
are known, and its camera-
centric calibrated coordinates 𝒑𝒑𝒊𝒊 
are known

𝑃𝑃1

𝑃𝑃2𝑃𝑃3

Known angles

camera

P3P from Calibrated Coordinates



𝑃𝑃1

𝑃𝑃2𝑃𝑃3

Known angles

camera

P3P Step 1: Finding depths 𝒅𝒅𝒊𝒊 of triangle vertices
Let 𝛿𝛿𝑖𝑖𝑖𝑖 denote the observed angle between the calibrated coordinates 
𝐻𝐻𝑖𝑖 and 𝐻𝐻𝑖𝑖  





Reduces to two quadratic equations in u and v.

a) Solve Eqn (1) for 𝑢𝑢2 in terms of 𝑢𝑢, 𝑣𝑣, 𝑣𝑣2 (and constants).
b) Plug this solution into Eqn (2), so that it has no 𝑢𝑢2 term. Solve for 𝑢𝑢 in terms of 𝑣𝑣, 𝑣𝑣2, 

and constants.
c) Plug this solution for 𝑢𝑢 back into Eqn (1), so that it has no more 𝑢𝑢 or 𝑢𝑢2. Instead, it is a 

4th degree equation in 𝑣𝑣. Get the 4 real solutions analytically. 
d) Then plug back into the solution found in step b) above, to get 𝑢𝑢.
e) Then get 𝑑𝑑1 from the quadratic equations on the last page.
f) Then plug back into 𝑑𝑑2 = 𝑢𝑢𝑑𝑑1 and 𝑑𝑑3 = 𝑣𝑣𝑑𝑑1 from the last page to get 𝑑𝑑2,𝑑𝑑3.

P3P Step 1: The algebraic drudgery 

Grunert 1841



The P3P problem has reduced to: 
Find 𝑅𝑅,𝑇𝑇 such that

𝑑𝑑𝑖𝑖
||𝐻𝐻𝑖𝑖||2

𝐻𝐻𝑖𝑖 = 𝑅𝑅𝑃𝑃𝑖𝑖 + 𝑇𝑇,  ∀𝑖𝑖 = 1,2,3

𝑃𝑃1

𝑃𝑃2𝑃𝑃3

Known angles
camera

P3P Step 2: 3D->3D Pose/ 3D Registration. Find R&T!

But naïve direct solution of the linear system is perilous, because 
rotation matrix R might not be valid.

(Does this remind you of something?)



Kabsch Algorithm for 3D->3D

• Compute centroids �̅�𝐴 and �𝐵𝐵 of the two sets of 3D points. 
• Create matrices 𝐴𝐴3×𝑛𝑛, 𝐵𝐵3×𝑛𝑛 after subtracting �̅�𝐴 and �𝐵𝐵 from all points in the 

two sets.
• To find 𝑅𝑅, we must solve:  argmin

𝑅𝑅∈𝑆𝑆𝑆𝑆(3)
||𝐴𝐴 − 𝑅𝑅𝐵𝐵 ||𝐹𝐹 = argmin

𝑅𝑅∈𝑆𝑆𝑆𝑆(3)
||𝑅𝑅 − 𝐴𝐴𝐵𝐵𝑇𝑇||𝐹𝐹2

 First set �𝑅𝑅 = 𝐴𝐴𝐵𝐵𝑇𝑇 3×3 
 Then decompose �𝑅𝑅 = UΣ𝑉𝑉𝑇𝑇

 Set 𝑅𝑅 = 𝑈𝑈
1 0 0
0 1 0
0 0 det(𝑉𝑉𝑈𝑈𝑇𝑇)

𝑉𝑉𝑇𝑇

• Set 𝑇𝑇 = �̅�𝐴 − 𝑅𝑅 �𝐵𝐵



PnP produces non-unique solutions (𝑛𝑛 > 3)?

• Recall that P3P Step 1 produced non-unique solutions for the distances 𝑑𝑑𝑖𝑖. 
• But if we have 𝑛𝑛 > 3 point correspondences, we only need Step 2. This is 

the “Perspective-N-Point” problem, or simply PnP.



Again, first switch to calibrated coordinates:

Direct solution for PnP (𝑛𝑛 > 3): Steps



Direct solution for PnP: Steps

Identical to the stage we reached with P3P, shown above.

But now, we are after a direct solution. 

No need to solve explicitly for depths as we did in P3P, so need to find unit vectors etc.



Get linear equations by cross-multiplying ...

𝐴𝐴2𝑛𝑛×12𝒙𝒙12 = 0,
where 𝒙𝒙 is a vector of all the unknowns including 𝑅𝑅 and 𝑇𝑇. 

Need at least 11 equations = at least 6 point correspondences to solve. 

Instead substitute 𝝀𝝀 and get 2 linear equations per point correspondence

Direct solution for PnP: Steps

Q: Why do we need more points for the direct method, when P3P was 
able to work with 3 points?



We meet Procrustes and Kabsch yet again

Again, just solving the linear system won’t give good rotations. So full steps:

1. Solve 𝐴𝐴2𝑛𝑛×12𝒙𝒙12 = 0 from 𝑛𝑛 ≥ 6 correspondences. 
2. Then, assemble the rotation matrix �𝑅𝑅 from the solution for 𝒙𝒙.
3. Then, find the closest valid rotation matrix by Kabsch!

4. May now need to adjust translation 𝑇𝑇 to be consistent with new 𝑅𝑅, e.g., by 
solving 𝐴𝐴2𝑛𝑛×12𝒙𝒙12 = 0, for only 𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3 (elements of 𝒙𝒙), holding 𝑅𝑅 fixed.

Decompose �𝑅𝑅 = UΣ𝑉𝑉𝑇𝑇

Then, set 𝑅𝑅 = 𝑈𝑈
1 0 0
0 1 0
0 0 det(𝑉𝑉𝑈𝑈𝑇𝑇)

𝑉𝑉𝑇𝑇



3D Motion from Two Views
or Structure from Motion (SfM)

100Robot Image Credit: Viktoriya Sukhanova © 123RF.com



Input: Two Calibrated Views of the Same 3D Scene

𝜆𝜆𝒑𝒑 𝐢𝐢𝐢𝐢 𝑪𝑪𝑪𝑪 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝒔𝒔 = 𝝁𝝁𝝁𝝁 𝐢𝐢𝐢𝐢 𝐂𝐂𝟐𝟐 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜

𝐶𝐶1 𝐶𝐶2

Now, any 3D coordinates in 𝐶𝐶1 frame: 
𝑋𝑋 𝐴𝐴1 → 𝑅𝑅 𝑋𝑋 𝐴𝐴1 + 𝑇𝑇 𝐴𝐴2

So 𝜆𝜆𝐻𝐻 𝐴𝐴1 → 𝑅𝑅 𝜆𝜆𝐻𝐻 + 𝑇𝑇 𝐴𝐴2 = 𝜇𝜇𝜇𝜇 𝐴𝐴2

Or now that we are in the same 
coordinate system: 

𝑅𝑅 𝜆𝜆𝐻𝐻 + 𝑇𝑇 = 𝜇𝜇𝜇𝜇

𝑋𝑋 𝐴𝐴2 = 𝑅𝑅 𝑋𝑋 𝐴𝐴1 + 𝑇𝑇



Two Calibrated Views of the Same 3D Scene

𝑅𝑅 𝜆𝜆𝐻𝐻 + 𝑇𝑇 = 𝜇𝜇𝜇𝜇



“Epipolar Constraints” Between Two Views of a Scene

𝑅𝑅 𝜆𝜆𝐻𝐻 + 𝑇𝑇 = 𝜇𝜇𝜇𝜇

𝝁𝝁𝑖𝑖𝑇𝑇 𝑇𝑇 × 𝑅𝑅𝒑𝒑𝑖𝑖 = 0



“Epipolar Lines” Pass Through “Epipoles”

“epipolar lines”

𝑒𝑒𝑝𝑝~ −𝑅𝑅𝑇𝑇 𝑇𝑇 and 𝑒𝑒𝑞𝑞~𝑇𝑇 are the “epipoles” = images of the other 
camera center on each plane = intersections of baseline T with 
the two planes = VP of the translation direction in each plane.  

All epipolar lines in each image plane pass through its epipole.



The Essential Matrix 𝐸𝐸

Now linear in the new unknowns 𝐸𝐸3×3 ! But will need to recover 𝑇𝑇3×1 ,𝑅𝑅3×3 later.

We had: 𝝁𝝁𝑖𝑖𝑇𝑇 𝑇𝑇 × 𝑅𝑅𝒑𝒑𝑖𝑖 = 0

⇒ 𝝁𝝁𝑖𝑖𝑇𝑇( �𝑇𝑇𝑅𝑅)  𝒑𝒑𝑖𝑖 = 0

Renaming 𝐸𝐸 = ( �𝑇𝑇𝑅𝑅):

𝝁𝝁𝑖𝑖𝑇𝑇𝐸𝐸 𝒑𝒑𝑖𝑖 = 0

“Essential matrix”



Is the epipolar constraint really linear in E?

Longuet-Higgins 1981

𝜇𝜇𝑖𝑖𝑇𝑇𝐸𝐸3×3𝐻𝐻𝑖𝑖 = 0 is a single equation that is linear in the elements of 𝐸𝐸
Can write this out explicitly as below.



8-Point Algorithm

Longuet-Higgins 1981

One row per point correspondence

Does this remind you of something?
Hint: 4-Point Collineations, PnP, …

Solution: As before, set 𝐸𝐸𝐸 to the last right singular vector of 𝐴𝐴𝑛𝑛×9

𝑛𝑛 × 9



After solving for 𝐸𝐸, not Quite Done Yet!
𝐸𝐸 = �𝑇𝑇𝑅𝑅 has fewer than 8 DOF. 𝑇𝑇 has 3 DOF (+3), 𝑅𝑅 has 3 DOF (+3), and 𝐸𝐸 is 
scale invariant (−1), so total 5 DOF.  So not any 3x3 matrix is a valid essential 
matrix. 

• Problem: Given the above, how to ensure that the estimated 𝑬𝑬 is a valid 
essential matrix?

• Problem: How to decompose 𝑬𝑬 into the �𝑻𝑻,𝑹𝑹 required in SfM?

*https://tutorial.math.lamar.edu/classes/calciii/quadricsurfaces.aspx

https://tutorial.math.lamar.edu/classes/calciii/quadricsurfaces.aspx


Constructing Valid Essential Matrices and Decomposing 
Them

Part 1: Proving ‘necessary’ (“If E is essential, then …”) will tell us 
about properties of essential matrices, so we can correct the E 
matrices from the direct method to become valid.

Part 2: Proving ‘sufficient’ (“If singular values …, then ...”) will help 
us solve 𝑅𝑅,𝑇𝑇 from 𝐸𝐸 for a particular pair of cameras.



Proof Sketch Part 1: Singular Values of A Valid Essential Matrix 

Utility: Having obtained an initial estimate 𝐸𝐸 through direct solution of >=8 
epipolar constraints, we may enforce “condition A” above on it, by:

1. Compute SVD 𝐸𝐸 = 𝑈𝑈
𝜎𝜎1

𝜎𝜎2
𝜎𝜎3

𝑉𝑉𝑇𝑇

2. Then, set 𝐸𝐸𝑛𝑛𝑛𝑛𝑤𝑤 = 𝑈𝑈
(𝜎𝜎1 + 𝜎𝜎2)/2

(𝜎𝜎1 + 𝜎𝜎2)/2
0

𝑉𝑉𝑇𝑇

We don’t yet know how to get 𝑹𝑹,𝑻𝑻 from 𝑬𝑬

This satisfies 
argmin
𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛

||𝐸𝐸𝑛𝑛𝑛𝑛𝑤𝑤 − 𝐸𝐸||𝐹𝐹2  s.t. 

𝐸𝐸𝑛𝑛𝑛𝑛𝑤𝑤 meets “condition A”.

Since E is scale-invariant, 
optionally, can also just 

set Σ to 𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑(1,1,0)

Condition A



Proof Part 2: Construction of 𝐸𝐸 as �𝑇𝑇𝑅𝑅

i.e. valid rotation matrix 𝑅𝑅, orthonormal with determinant +1 (right-handed coordinate system)



Proof Part 2: Construction of 𝐸𝐸 as �𝑇𝑇𝑅𝑅 
Consider the simplest matrix satisfying 𝜎𝜎1 = 𝜎𝜎2 and 𝜎𝜎3 = 0:

1 0 0
0 1 0
0 0 0

It indeed can be decomposed into antisymmetric / skew and rotation, e.g.:
1 0 0
0 1 0
0 0 0

= −
0 1 0
1 0 0
0 0 0

×
0 −1 0
1 0 0
0 0 1

          skew-symmetric �𝑇𝑇−𝑧𝑧  x rotation 𝑅𝑅𝑧𝑧,𝜋𝜋/2

   𝑇𝑇−𝑧𝑧 =
0
0
−1

 and rotation by 90° about z axis

#1



The Four Possible 𝑅𝑅,𝑇𝑇 decompositions of ±𝐸𝐸

±𝐸𝐸 =  �𝑇𝑇 𝑅𝑅
                𝜎𝜎( �𝑈𝑈𝑇𝑇−𝑧𝑧) 𝑈𝑈𝑅𝑅𝑧𝑧,+𝜋𝜋/2𝑉𝑉𝑇𝑇

                    𝜎𝜎( �𝑈𝑈𝑇𝑇+𝑧𝑧) 𝑈𝑈𝑅𝑅𝑧𝑧,+𝜋𝜋/2𝑉𝑉𝑇𝑇

                𝜎𝜎( �𝑈𝑈𝑇𝑇+𝑧𝑧) 𝑈𝑈𝑅𝑅𝑧𝑧,−𝜋𝜋/2𝑉𝑉𝑇𝑇

                𝜎𝜎( �𝑈𝑈𝑇𝑇−𝑧𝑧) 𝑈𝑈𝑅𝑅𝑧𝑧,−𝜋𝜋/2𝑉𝑉𝑇𝑇

Last left singular vector of 𝐸𝐸, with 
either + or - sign

( �𝑇𝑇,𝑅𝑅)

Can disambiguate by enforcing positive 
depths for all points (most points if 
noisy) in both cameras.

But how to get depths?

Can get rid of the scale 𝜎𝜎, 
no harm done.

Note: Both R 
matrices are not 

guaranteed to have 
determinant +1. 

Could be -1. But at 
least one with +1. 



Computing depths 𝜆𝜆𝑖𝑖 , 𝜇𝜇𝑖𝑖 through “triangulation”



The full two-view 8-point algorithm
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The full two-view 8-point algorithm

𝑅𝑅 = 𝑈𝑈𝑅𝑅𝑍𝑍,−𝜋𝜋/2𝑉𝑉𝑇𝑇
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