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Basic Perspective Projection Equations
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Place in the Hierarchy of Transformations
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Projective Geometry

Based on slides by Jianbo Shi, Hyun Soo Park, Kostas Daniilidis



Projective geometry «<» Euclidean interpretation

In the Euclidean interpretation, we treat w as the third spatial coordinate.

* The w axis is a scaled version of the principal axis Z (in camera-centric
coordinates).

* Theimage planeisw = 1,sameasZ = f

*w = 0 is the same as Z = 0. Parallel to image plane, passing through
camera center. )Y
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Projective lines

* What does a line in the image correspond to in projective space?

e

e Aline is a plane of rays through origin
—all rays (x, y, w) satisfying: ax + by + cw = 0
X
|-
w
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Projective Lines

Q: what is the relationship
between [ = (a, b,c)’ and

mage plane the plane?

. It is perpendicular to the
plane.

l=ax+by+cw=0

(0,0,0)
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Point at infinity / “idea

* |deal point (“point at infinity”)
" p=(x,y,0)—rays through camera center parallel to image plane
" |t has infinite image coordinates

points
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Point at infinity / “ideal” points

(X1,X,0)

/N

Looking-at direction  “|deal” points




“Line at infinity”
* A line passing through all ideal points i.e. point

lo = (0,0,1)

e Because:

L1
0 0 1] fz2] =0




Vanishing points
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A vanishing point is a
point on the image plane
of a perspective
rendering where the
two-dimensional
perspective projections
of mutually parallel lines
in three-dimensional
space appear to
converge.

Da Vinci’s “The Last Supper” c. 1495-98. http://pennpaint.blogspot.com/






Where vanishing points come from

ane

___ Vanishing point

Ground plane

. _— Parallel lines
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The line connecting the camera origin and the vanishing point is parallel to all lines
that share the same direction and converge at the vanishing point.
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How Artists Find Vanishing Points

Find VP of a world line by:
- Standing at “camera center”.

- Holding arm out parallel to the
world line.

- Noting its intersection with the
“canvas” or image plane. i.e. the
arm represents the light ray.

“Vanishing rays of a world line”
(camera rays through the VP) are
just rays parallel to that line,
passing through the camera center.




Perspective Projections are Linear in [P
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Camera Projection Equation

XY
x=fZ7y=f3 R
pd \ principal axis -
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This assumes that:
 theimage coordinate system origin is the same as the “principal point” p where the

principal / optical axis intersects image plane. Sometimes called “image center”
* Points in the 3D world are known in the camera-centric coordinate system.



Camera Coordinate System + Principal Point Offset

image plane

coordinates
-
7. u optical axis
vy
Y

¥ X Z-axis is the
camera coordinates \ Optica| axis

The image plane (u, v) is perpendicular to the optical axis.
Intersection of the image plane with the optical axis is the image center

(uﬂ'! vﬂ)
Projection Xc YC
in pixels u=fZ_+uO' v=fZ_+vO

Cc Cc



Projection equation with image origin # principal point
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Generalizing intrinsics (1/2)

1. If pixels are not square?
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Generalizing intrinsics (2/2)

1. If pixels are not square?

u Sx Ug );W
ﬂ, [1{] — Sy Vo [R3><3 t] ZW = K[th]XW
1 w

! 1

2. If “radial distortions”, then the intrinsics can no longer be
represented as a linear operator any more



Parametrizing radial distortion in large field-of-view cameras
)

Then, correct for radial distortion:

— 2 4 6
Upre—distortion (7‘) — upost—distortion(l + k17‘ + kzr + k37‘ + )

— 2 4 6
Vpre—distortion (T) — vpost—distortion(l + k17" + kz"" + k37" + )

where 1 is the distance from a (usually unknown) image center location (ug, vg).

Can choose the degree of the radial distortion to calibrate for. More => more
accurate, but requires more images to fit well.



Putting the pieces together: Projection matrix P

world coordinates

Zy
image plane
coordinates X Yo

Yl\ ZC v¢\\ optical axis
v X

camera coordinates \

camera 3D coords to pixels Convert world to camera coordinates
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Perspective Projection in homogeneous coordinates
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Applying extrinsics (and intrinsics) for 3D shape projection

Can do AR-style projection of a 3D object onto the world plane once the full
extrinsics and intrinsics are known!

IKEA App, image from WIRED.



Application of pose: projecting a solid shape into the world

* Our normal projection equations tell us how world points in world
coordinates project onto a camera, given camera pose (R, T) and intrinsics K

world coordinates

Iy
image plane ==l
coordinates Xw Yo
| :} .- -
(N p ,LC
1, X.

camera coordinates

optical axis

< | .
=

x~K[R|t]X,,



Application of pose: projecting a solid shape into the world

* Suppose the shape is expressed by the positions of points X; in a “shape-
coordinate system”

Coordinate system attached to the object



Application of pose: projecting a solid shape into the world

* First find Ry,,, t,, that convert object-centric coordinates X, into world-
centric coordinates X,, = R, X + L., to place the object at the right
place in the world. (Think: what do R, and t.,, mean exactly?)

* Then just render the object points at K|R|t]X,,

world coordinates

y /.
image plane
coordinates X / Yo

NZC 4\\“ optical axis
YC

Xc

camera coordinates \




Projective Transformations

aka Collineations
aka Homographies
aka Projectivity



Example of Projective Transformation

Common notations: H
(Note that some books use A; however, we will avoid using A in this course, as A is commonly associated

with Affine Transformations.)

® *
Frojective
transformation
-
¢ e
Affine ..r._-_-_ - - T 1T
transformation T
- e




Example of Projective Transformation

* A 2D point before H is represented as (X, Y) , after Projective
transformation is (u, v) :
H\ X + HyppY + Hyg
H31 X + H3oY + Hgg

U X or , = HuX+ HynY + Hy
v| ~H|Y " H3 X + H3Y + Ha




Projective Transformation = Homography
= Collineation=Projectivity
Definition

A projective transformation is any invertible matrix transformation
P? — P2

A projective transformation H maps p to p’ ~ Hp

Invertibility means that det (H) # 0 and that there exists A # 0 such that
Ap' = Hp

Observe that we will write either p’ ~ Hp or A\p' = Hp



Perspective Projection v.s. Projective Transformation

_ Perspective Projection Projective Transformation

Definition

Mathematical Formula
Input Space

Output Space
Applications

A mapping from 3D space to a 2D plane
(e.g., camera image)

p'=K[RIT]P
R3 (can also be P3)
R? (can also be P?)

Image formulation, 3D rendering

A general mapping between
projective space (e.g., P? to P?)

p'=H-p
P™ (typically P? in this class)
P™ (typically P? in this class)

Image registration, planar
transformation, texture mapping



When Perspective Projection -> Projective Transformation?

A perspective camera projection of a plane (i.e., a camera image) is a projective
transformation in P?

VISION SCIENCE
Photons to Phenomenology

Stephen E. Palmer




When Perspective Projection -> Projective Transformation?

e Can we show that the perspective camera projection from P3 — P2 of a

plane in the world is in fact a homography in IP? (i.e., projective
transformation from P? — P?) when the world plane coordinates are

expressed in P??

e Remember:

X
[3’] ~K3x3[R3x3/t3%1]
w

— N <X




Assume world plane Z,, = 0

X T %

Y world coordinates
C TZWXw—aXis out of page)

/////////

A A,



When Perspective Projection -> Projective Transformation?

Recall the projection from world to camera
u /)

(’U) ~ K (rl ro T3 T) 7
N \W/

and assume that all points in the world lie in the ground plane Z = 0.




Pose From Homography

Recall the projection from world to camera

u X\
v NK(rl ro T3 T) 7

N \W)

and assume that all points in the world lie in the ground plane Z = 0.

Then the transformation reads

U X
v| ~K (frl 9 T) Y
w \ Y : W

The planar homography
H:P? - P?

Computing the homography can tell
us how the camera (and therefore,
e.g. a robot attached to the camera) is
oriented w.r.t. to a world plane!
(assuming known K)

Q: Where do you get r5 from though?

A:T3=T1XT2



Localization w.r.t. known planes using homographies




Computing Homographies From
4 Point Correspondences

“4-point collineation”



How can we compute the projective transformation between
a known pattern and its projection?

and

Floor tiles measured in [m] Points in pixel coordinates



The result of such a transformation would map any point in one plane to
the corresponding point in the other

“correspondences”

Floor tiles measured in [m]

Points in pixel coordinates



How many unknowns are in a projective

transformation H ?
(P? - P?)

A projective transformation u His the same as H since they map to
projectively equivalent points:

uAp’ = p Hp

We will be able to determine a projective transformation only up to a scale
factor. Hence the 3x3 invertible matrix g will have only EIGHT
independent unknowns.



How can we compute the projective transformation between
a known pattern and its projection?

B is the image projection of the
s intersection of vertical parallel
.._........'I';:::-_-;-;;:::_,_ lines (0,1,0) .i.e. vanishing
-h“""‘ﬂgj__l_’_]t in the vertical direction!

“Kis the image
projection of the
intersection of
horizontal parallel
lines (1,0,0). i.e.
horizontal vanishing
point

These are homogeneous coordinates to represent the
known pattern in P2




Image Plane

Camera
]
Vanishing B’
Point b
@;&@ Projection center
Correspondences: — A (1,0,0) Parallel Lines
(P? - P?) |

«— B (0,1,0)

C C - C’ (ol Ol 1) ""
AS



Assume that a mapping H maps the three points
(1,0,0), (0,1,0), and (0,0, 1) to the non-collinear points A,B,C

with coordinate vectors a,b and ¢ € P%. Then the following is a possible
projective transformation:

A B C

c 1{|0]{0
(a] b|[c) ~ Hsyy5  [|O||1]]0
0/[0]]1




Solution: Introduce a 4t point correspondence D
Note: makes sense, because after all, H has 8 degrees of freedom, and

each 2D point correspondence pins down 2DOF.

_ _ o Ly
B is the image projection of the ilte >
intersection of vertical parallel ikt .
=, lines (0,1,0) .i.e. vanishing it
“peint in the vertical direction!

AAis the image
projection of the
intersection of
horizontal parallel
lines (1,0,0). i.e.
horizontal vanishing
point




Image Plane

Camera

]
Vanishing B’
Point ’
L Projection center
Correspondences: — A (1,0,0) Parallel Lines

(P2_>P2) |
«— B (0,1,0)

C C — ¢ (0,0,1)

D d — D’ (1,1,1) A ‘



Let us assume that the same H maps (1,1, 1) to the point d. Then, the
following should hold:

hence
d~ aa+ Bb+vc. or A =aa+ Bb+ ¢

Because a, b, ¢ are not collinear, there exist unique a/A, 8/A, /A for
writing this linear combination.



Four points, no three of them
collinear, suffice to unambiguously
recover a homography

Choosing the points to be the horizontal and vertical vanishing points
(1,0,0), (0,1,0) plus origin (0,0,1) and the diagonal (1,1,1) is
particularly “nice” especially if you have a square to start from, but
really, any four non-collinear points will do.

(coming up next)



What happens when the original set of points is not a square?

Find projective transformation mapping (a, b, ¢, d) — (a’,b,c,d’):



To determine this mapping we go through the four canonical points.

We find the mapping from (1,0,0), etc to (a, b, c,d) and we call it T
a~T(1,0,0)7, etc

We find the mapping from (1,0,0), etc to (a/,b’,¢,d’) and we call it T":
a' ~T'(1,0,0)7, etc

Then, back-substituing (1,0,0)T ~ T~1a, etc we obtain that

a =TT 'a,etc



General Form for Computing homographies

/
x ~Hx

x’ hi1 hi2 his x
M ¥ | = hor ha hos Y
1 ha1 hsa hs3 1

2z’ —=h1x + h12y + hi3
Ny =ho1x + hooy + has
A =h31Z + h32y + h33



Converting to a linear system of equations

r_ h11z + h12y + h1s —h11x — h12y — h1z + ha1zz’ + hsoyz’ + hyzx’ =0
h31x + h3oy + h33 —ho1Z — hogy — hoz + ha12y’ + haayy' + hasy’ =0
) — ho1x + ho2y + has
hs1x + h32y + hss
Two linear equations for Az \ ;|
each point correspondence! ay
a;=(-2 —y -1 0 0 0 z2/ yo' o')
ay=(000 -z -y -1 2y vy ¢ )
T
h=(huy hig bz hor hg hoy hat hsy hss )



Homography -> Virtual Billboards
For virtual billboards, we just treat the desired billboard pattern as the
world pattern.
Recall that the homography is a mapping from world to image pixel
coordinates. So, just the homography can directly find the image pixel
coordinate corresponding to every image in the world pattern.




Homography -> Vanishing Points, Horizon



Homography columns are vanishing points

If H = (hl ho hg) then hy ~ A and hy ~ B.

So the first two columns are two Orthogonal vanishing points



Horizon

Image Plane

Vanishing
Point

LS Projection center

=

Parallel Lines

In essence, a projective geometry may be thought of as an extension of Euclidean

geometry in which the "direction" of each line is subsumed within the line as an extra
"point", and in which a "horizon" of directions corresponding to coplanar lines is A i
regarded as a "line" -



X
Equation of horizon: (hy X h,)T' [y | =0

We will encounter another way to derive this equation of the horizon very soon.



Projecting the line at infinity to compute the horizon

Points at infinity in the world plane look like Image Plane

X, Y, W =0)T

T

o

ne “line” connecting them is W = 0, the
ine at infinity”. The image of this line is

P
I

So if we could find the projection of this

the horizon, which contains all vanishing

oints. Expressed in world plane P?, this
ne’s coefficients are (0,0,1)7.

Parallel Lines

ne, we could find the horizon




Summary

Vanishing rays/planes through the camera center are parallel to the world lines/planes

So, the horizon plane is parallel to the ground plane
and hence h; X h, is the normal to the ground plane!

Projection center

Horizon plane =
Vanishing plane =
Viewing plane

World plane //
vanishing plane

World plane = Ground
plane in this case



Using the horizon to orient the
camera



Horizon gives complete info about how camera is oriented w.r.t. world plane*!

Thumb rule: “If horizon is horizontal & central, camera is correctly vertical &
principal axis is parallel to world plane**!”

. e = ..
B . . >
[ il ) ] N
=
~ E

*caveat: assuming known K
**caveat: assuming that principal axis passes through image center, and camera axes are horizontal. (usually approximately true)



Homography -> Camera Pose



Recap: Pose From Homography

Recall the projection from world to camera

u X\
v NK(rl ro T3 T) 7

N \W)

Computing the homography
can tell us how the camera
(and therefore, e.g. a robot
attached to the camera) is
oriented w.r.t. to a world
plane! (assuming known K)

Q: Where do you get r; from
thOLIgI'fP A: ')"3 — ')"1 X 1‘2

and assume that all points in the world lie in the ground plane Z = 0.

Then the transformation reads

U X
v| ~K (frl 9 T) Y
w \ Y : W

The planar homography
H:P? - P?



Image Plane

Vanishing el B
Point )

Projection center

Parallel Lines

H~K(r, 1, T
( b ) o a~KT1, bNKT'Z l
H~(a,b,c) — |

* n
“l
L
?*a
A%
*
LERE S
*
*



* We can get the rotation of camera from 2 orthogonal vanishing points on a
plane, assuming known intrinsics matrix K.

H""K(Tl, Tz, T) —
H~(a,b,c) —

a~K7‘1, b"’KTz — T1~K_1a, TZNK_lb



But actually, not quite!

* According to the previous slide K(r; , T) = H, or in other words,
K_lH — (T'l, Tz,T) and 3 =T X (&)
If only life were so simple!

* Problem: when we estimate homographies (e.g. through solving linear
systems with 2n equations from n >= 4 point correspondences), and then
compute K1H, we aren’t guaranteed to find a valid r; and 7, pair. i.e. an
orthonormal pair.

= So, we need to find a way to first “correct” (K~1H); to get
orthonormal r; and r,. Often called the “Procrustes”, or “special
orthogonal (SO) Procrustes” problem.

" And we must solve this in real-time for robotics applications, so
preferably an inexpensive approach.



The macabre Greek legend of Procrustes

We are trying to get every (K~1H) “traveler” to fit the “bed” of valid rotation
matrices by stretching it or chopping it off.

= Brobiruftes, =

Mi




Let us name the columns of K1 H:
K~'H = (h} hy hf)

We seek orthogonal r1 and ry that are the closest to k) and h5. The
solution to this problem is given by the Singular Value Decomposition.

We find the orthogonal matrix R that is the closest to (h] k5 R} X hj):

arg min || R — (h’l hy hY X h’z) H%
ReSO(3)




Kabsch algorithm for Procrustes
argmin |[R— (R hy by x hb) ||}
ReS0O(3)

If the SVD of
(b Ry Ry xhy) =USVT

then the solution is

1 0 0
R=U|0 1 0 VT
0 0 det(UVT)

The diagonal matrix is inserted to guarantee that det(R) = 1.

To find the translation : T = h%/||R)|

(In case original columns were not even unit norm)
proof in supp readings- Kabsch-Algorithm-RT-from-H-proof.pdf. We will also prove it in the next class.




Full Kabsch algorithm for finding pose via homography
1. Find H up to a scale factor from the point coorrespondences
2. Compute H' = K~'H. Let H”’s columns be (a b c)

3. Minimize
@ b c)=a(n r D)l

wrt. 1 eR,r,r, TeR3

s.t. rTry = 0and [r|| = [Irall = 1
_ Alternative to running
Let Kabsch including the 3
(a b) = Usp st 0 VT B ! !
2 0 5] 22 columnc = h; X h, ason
Then s last slide
(I’l 7'2) = U3x2V2];c2 and A= ! > 2

4. T=c/aandR=(r rn r xn) ScaleR to have determinant 1 if needed.



So now, camera pose (actually) known w.r.t world plane!




Vanishing Points -> intrinsics K



Ground Plane

Horizon

Parallel Lines

Image Plane




Projection
Center O

Theorem from Euclidean Geometry:

If Q is the orthocenter of ABE and all

three angles AOB, BOE, and EOA are right
angles, the OQ is perpendicular to ABE plane!

OQ is the principal axis and ABE is
the image plane, hence, Q is the
principal point / “image center”




Summary

* If we have 3 orthogonal VPs, we can get full intrinsics K (focal length and
image center), and also extrinsics R.
= What's missing? Just the translation t.

= And that information is not contained in VPs, because camera translations don’t
affect the VPs!

= Which is why, when we found homographies (that do contain full information
about translation), we used more than just VPs.



Cross Ratios & Length Measurements from Single
Images (“Single View Metrology”)



What happens when one of the points is at infinity?

Horizon D’

e AIC! . B'Cl _ 4
In pixels T B =

When a point D is at infinity, the cross-ratio becomes a ratio !

AC . BC _ AC (Thinkﬂ'E—AC © AC

AD * BD = BC © @ BC o BC




Pose from Point Correspondences,
the Perspective N Point Problem (PnP)



Localization by observing known 3D points from the world?

R
A real problem for autonomous cars, for example!
GPS: ~ a few feet accuracy. Just not good enough.

Instead, autonomous cars rely on 3D maps of the world to localize!



The Perspective 3-Point Problem

P
* Given the point correspondences, find camera pose R, T

What are the differences from 4-Point Algorithm?

Jingnan Shi, https://jingnanshi.com/blog/pnp minimal.html



https://jingnanshi.com/blog/pnp_minimal.html

P3P v.s. Homography

* Why P3P needs only three point correspondences, while computing
Homography needs four point correspondences?



P3P from Pixels

camera o dl

P, A triangle’s world coordinates P;
are known, and its pixel
coordinates are known

OWn angles




Pixels — “Calibrated coordinates”

RGB images only provide pixel coordinates u, v for each vertex, not
camera-centric 3D coordinates. Convert these to:

“Calibrated coordinates”: p;~ K~ 1(w; v; 17

These are essentially image plane coordinates with principal point
as origin, and focal length set to 1.

Euclidean interpretation: p; is a vector in camera coordinates,
originating from the camera center and pointing toward the 3D
point corresponding to pixel coordinates (u;, v;).



P3P from Rixels Calibrated Coordinates

camera g dl
o P A triangle’s world coordinates P;
dOwn angles are known, and its camera-
centric calibrated coordinates p;
43 ; are known

The P3P problem: Find A;, R, T such that
Ap1 =RP; +T

A2 = RP, +T Q: Are A; the same as “depths” d;?
Asps = RP; +T A: No, because p; are not unit vectors.




P3P from Calibrated Coordinates

camera o dl

o P A triangle’s world coordinates P;
are known, and its camera-
centric calibrated coordinates p;
are known

OWn angles

d3

The P3P problem: Find d;, R, T such that
d;

[1pill2

p; = RP; + T, Vi=1,2,3



P3P Step 1: Finding depths d; of triangle vertices

Let 0;; denote the observed angle between the calibrated coordinates
p; and p;

Then cosine law reads

d; + d5 — 2d;dj cos 65 = d;

camera g dl

dOwWn angles

d3




The cosine law

d? + d;% — 2d;d; cos §;; = dfj

applies for each point pair. With 3 points we could solve 3 quadratic
equations for d;—1_ 3.

Set d9 = ud; and d3 = vd; and solve all three equations for d;:

d2 — d%S

1 u? 4+ v2 — 2uw cos do3 ﬁ
d2 — d%B

1 1+ v2 — 2vcosds
di = o ﬁ

u? + 1 — 2ucos b1



P3P Step 1: The algebraic drudgery

Reduces to two quadratic equations in u and v.

dis(u® +v® — 2uvcosda3) = di(1 +v* — 2v cos 013) (1)
d2(1+v? —2vcosédi3) = di5(u®+ 1 —2ucosdio) (2)

Solve Egn (1) for u? in terms of u, v, v? (and constants).

Plug this solution into Egn (2), so that it has no u? term. Solve for u in terms of v, v?,
and constants.

Plug this solution for u back into Eqn (1), so that it has no more u or u?. Instead, it is a
4t degree equation in v. Get the 4 real solutions analytically.

Then plug back into the solution found in step b) above, to get u.

Then get d, from the quadratic equations on the last page.

Then plug back into d, = ud; and d; = vd; from the last page to get d,, d;.



P3P Step 2: 3D->3D Pose/ 3D Registration. Find R&T!

The P3P problem has reduced to:

Find R, T such that
d;

[1p:ll2

Di = RPl' + T, Vi = 1,2,3

But naive direct solution of the linear system is perilous, because
rotation matrix R might not be valid.

(Does this remind you of something?)



Kabsch Algorithm for 3D->3D

« Compute centroids A and B of the two sets of 3D points.

* Create matrices Asx,,, Bsxn after subtracting A and B from all points in the
two sets.

* To find R, we must solve: argmin ||A — RB ||z = argmin||R — ABT||?
RESO(3) ReSO(3)

= First set R = (ABT)343
= Then decompose R = UZVT

1 0 0
'SetRzU(O 1 0 )VT

0 0 det(VUD)
*SetT = A —RB



PnP produces non-unique solutions (n > 3)?

* Recall that P3P Step 1 produced non-unique solutions for the distances d;.

* But if we have n > 3 point correspondences, we only need Step 2. This is
the “Perspective-N-Point” problem, or simply PnP.



Direct solution for PnP (n > 3): Steps

Again, first switch to calibrated coordinates:

Pose from IN points in space given intrinsic parameters K and
correspondences (X;,Y;, Z;, i, ¥i)i=1..N

where
ZT; U;
yi | ~ K1 | v
1 1

where u;, v; are pixel coordinates.



Direct solution for PnP: Steps

. P3P from Pixels
Given (Xisnaziawi:yi)i:L..N — :
find R, T such that are known, and ts comern.
centric calibrated coordinates p;
ﬂjg -Xﬁ are known
]- Z% The P3P problem: Find A;, R, T such that

Alp]_:RPl‘l'T
Azp2=RP2+T
A3p3=RP3+T

|dentical to the stage we reached with P3P, shown above.

But now, we are after a direct solution.

No need to solve explicitly for depths as we did in P3P, so need to find unit vectors etc.



Direct solution for PnP: Steps

Instead substitute A and get 2 linear equations per point correspondence

r11X; + r12Y; + 71132 + 17

i Xi ‘ v r31X; + r32Y; +r334; + 13
Ail i | =R Y )+ T | ro1X; + rooY; +re3Z; + 1o

1 2 i r31X; + 132Y; +1r334; + 13

Get linear equations by cross-multiplying ...

Aznx12%12 =0,
where x is a vector of all the unknowns including R and T..

Need at least 11 equations = at least 6 point correspondences to solve.

Q: Why do we need more points for the direct method, when P3P was
able to work with 3 points?




We meet Procrustes and Kabsch yet again

Again, just solving the linear system won’t give good rotations. So full steps:

1. Solve A5,4x12X1>, = 0 from n = 6 correspondences.
2. Then, assemble the rotation matrix R from the solution for x.
3. Then, find the closest valid rotation matrix by Kabsch!

Decompose R = UZVT

1 O 0
Then, set R = U (0 1 0 )VT

0 0 det(VUT

4. May now need to adjust translation T to be consistent with new R, e.g., by
solving A,.,«12X1, = 0, for only t4, t,, t; (elements of x), holding R fixed.



3D Motion from Two Views
or Structure from Motion (SfM)



Input: Two Calibrated Views of the Same 3D Scene

[Ap]in C1 camera coords — [ﬂq ]in C2 camera coords

[Xlcz = R[X]c1 + T

Now, any 3D coordinates in C; frame:
[Xlc1 = [RIX]¢1 + Tle

SO [Aplci = [R(Ap) + Tl¢z = [1qlcs

Or now that we are in the same
coordinate system:

R(Ap) +T = uq




Two Calibrated Views of the Same 3D Scene

R(Ap) +T = uq

Given 2D correspondences (p,q)

Find motion R, T and depths A, u.




“Epipolar Constraints” Between Two Views of a Scene

We can eliminate the depths from R(Ap) + T = uq and obtain the epipolar
constraint:

q! (T X Rpy) =0



“Epipolar Lines” Pass Through “Epipoles”

\pl o . . )) .
N epipolar lines e
N 7
S T

ep ~ —RTT eqg~T

ey~ —RT T and e,~T are the “epipoles” = images of the other

camera center on each plane = intersections of baseline T with
the two planes = VP of the translation direction in each plane.

All epipolar lines in each image plane pass through its epipole.



The Essential Matrix E

We had: q; (T X Rp;) = 0
= q; (TR) p;=0

Renaming E = (TR):

qiEp; =0

ep ~ —RI'T eq~ T

“Essential matrix”

Now linear in the new unknowns E3+3 ! But will need to recover T3y, R3x3 later.



s the epipolar constraint really linear in E?

qiTE3x3pi = 0 is a single equation that is linear in the elements of E
Can write this out explicitly as below.

If
E:(el €92 83)

then epipolar constraint can be rewritten as

T
q" (61 €2 63) (Py) = q' (P:cel T Py€2 +Pz€3)
pz
€1
= (p=q" pya’ pqh) (82) =0
e3

This equation is linear



8-Point Algorithm

Let @ = (pzq’ pyq’ p2q”)

al
()

E' = .
0 One row per point correspondence

T
\a”nx9

where a; is the known 1 x 9 vector of image points and E’ is the essential
matrix re-organized into a 9 x 1 column vector.

T
/gé\
E' has to be in the null-space of | " |. Does this remind you of something?
\ag/ Hint: 4-Point Collineations, PnP, ...

Solution: As before, set E’ to the last right singular vector of A, ¢




After solving for E, not Quite Done Yet!

E = TR has fewer than 8 DOF. T has 3 DOF (+3), R has 3 DOF (+3), and E is

scale invariant (—1), so total 5 DOF. So not any 3x3 matrix is a valid essential
matrix.

* Problem: Given the above, how to ensure that the estimated E is a valid
essential matrix?

* Problem: How to decompose E into the T, R required in SfM?

*https://tutorial.math.lamar.edu/classes/calciii/quadricsurfaces.aspx



https://tutorial.math.lamar.edu/classes/calciii/quadricsurfaces.aspx

Constructing Valid Essential Matrices and Decomposing
Them

Necessary and sufficient condition: E is essential iff
Jl(E) — JQ(E) 7& 0 and Jg(E) = 0.

Part 1: Proving ‘necessary’ (“If E is essential, then ...”) will tell us
about properties of essential matrices, so we can correct the E
matrices from the direct method to become valid.

Part 2: Proving ‘sufficient’ (“If singular values ..., then ...”) will help
us solve R, T from E for a particular pair of cameras.



Proof Sketch Part 1: Singular Values of A Valid Essential Matrix

Hence, we have proved that if a matrix is essential, namely, can be
decomposed as the product of an antisymmetric 7' and a special
orthogonal R then its singular values are 01 = 09 > 0 and o3 = 0.

01(E) = 02(E) # 0 and o3(E) = 0.

Utility: Having obtained an initial estimate E through direct solution of >=8
epipolar constraints, we may enforce “condition A” above onit, by:

01 This satisfies
1. ComputeSVDE =U argmin ||E ey, — E||? s.t.

Enew

E, ., meets “condition A”.

2. Then,setE,,., =U

Since E is scale-invariant,
optionally, can also just
set X todiag(1,1,0)

We don’t yet know how to get R, T from E



Proof Part 2: Construction of E as TR

Necessary and sufficient condition: E is essential iff
O’l(E) — JQ(E) 7& 0 and Ug(E) = 0.

We have to prove the sufficient condition:

If the singular values of a matrix are are 01 = 03 > 0 and o3 = 0 then
the matrix can be decomposed into the product of an antisymmetric
T and a special orthogonal R.

i.e. valid rotation matrix R, orthonormal with determinant +1 (right-handed coordinate system)



Proof Part 2: Construction of E as TR

Consider the simplest matrix satisfying o; = 0, and a3 = 0:

1 0 O]
0 1 0

0 0 O

0 3 a9
as 0 —a

—as a) 0

It indeed can be decomposed into antisymmetric / skew and rotation, e.g.:

1 0 O]

0 1 0
0 0 O

T ,=1]0
1.

y—symmetric T_,
0

-0 1 0]
-1 0 O

. 0 0 O

X

0

1

0

7(ation Ry /2

—1 O]

0
0

0

1.

—

and rotation by 90° about z axis



The Four Possible R, T decompositions of +F£ |EG—G_G_g

matrices are not

o 0 0 guaranteed to have
fE=UXVT =U| 0 o 0 | VT, there are four solutions for the pair (T, R) UL
0O 0 0 Could be -1. But at

= = least one with +1.

T R
(UT_2) (URz,1ms2V")

Can get rid of the scale o, (UT, ) (UR2,+7T/2VT)
no harm done. (UT,,) (URZ,—n/ZVT)

(UT-,) (UR,—r/2VT)

Last |eft singular vector of £, With e N T e e e Ty R e LT

depths for all points (most points if
noisy) in both cameras.
But how to get depths?

either + or - sign



Computing depths 4;, u; through “triangulation”

Triangulation is possible if we have computed R and T’ but again up to a
scale factor. Set ||T]| = 1:

There are then 3 equations with 2 unknowns \; and p; for each point.

Solve with pseudo-inverse.



The full two-view 8-point algorithm

A (8x9)

Ll © Build the homogeneous linear system by stacking epipolar constraints
Y— T , |
o q; (T x Rp;) =0,i=1,...,8:
c - -
O : el
= T /
= (2 @ pi) €q

_ /
8 i |t €3
fd
O
()
R
o

@ Let | e, | be the nullspace of A (if og = 0 give up)




The full two-view 8-point algorithm

© [ ¢ ¢ e} | =Udiag (0] o} o4)V*. Then use the following
estimate of the essential matrix:

E = Udiag (“i ;“5,“5;"5,0) yT

O T=+i3s R=URy, VT or R=URz_p,,V"
@ Try all four pairs (T, R) to check if reconstructed points are in front

Make E valid

of the cameras | Aq = uRp + T | give A, u > 0.

Decompose
Into T, R



